
Ac#ve	Poin#llis#c	Pa.ern	Search	
Yifei	Ma*,	Dougal	J.	Sutherland*,	Roman	Garne.,	Jeff	Schneider	

				Problem	Setup		_	

				Finding	Vor4ces	with	a	Black-Box	Classifier	_	

\documentclass[10pt]{ar#cle}	
\usepackage[width=3.7in]{geometry}	
\usepackage[usenames]{color}	%used	for	font	color	
\usepackage{amssymb}	%maths	
\usepackage{amsmath}	%maths	
\usepackage[uR8]{inputenc}	%useful	to	type	directly	diacri#c	characters	
\usepackage{bbm}	
\DeclareMathOperator*{\argmin}{arg\,min}	
\DeclareMathOperator*{\argmax}{arg\,max}	
	
	
\usepackage{algorithm}	
\usepackage[noend]{algorithmic}	
\usepackage{eqparbox}	
\usepackage{cap#on}	

%\max_{x_\ast}	\;	\mathbb{E}\sum\nolimits_{g\in\mathcal{G}_t}\big[r_g(\mathcal{D}_\ast)\mid	
x_\ast,	\mathcal{D}_t\big]	
%	
%z_\ast\mid	x_\ast,\mathcal{D}_t	\,\sim\,	\mathcal{N}(\mu_{f\mid\mathcal{D}_t}(x_\ast),	\;
\kappa_{f\mid\mathcal{D}_t}(x_\ast,x_\ast)+\sigma^2)	
%	
%&r(\mathcal{D}_t\cup\{x_\ast,z_\ast\})	\\	
%&=	\sum\nolimits_{g\in\mathcal{G}_t}\mathbbm{1}\big\{\mathbb{E}\big[h_g(f)|\mathcal{D}
t,x\ast,z_\ast\big]	>	\theta		\big\}	
%	
h_g(f)	=	\Phi\Big(\underbrace{\int_{x\in\mathcal{X}_g}	\!	w_g(x)f(x)	\;\mathrm{d}x}_{:=	L_gf}	+b	
\Big),	\mbox{	Φ	is	normal	cdf.}	
%	
%r(\mathcal{D})	=	\sum_{g\in\mathcal{G}_t}	\mathbbm{1}\lej\{	\Phi\lej(\frac{	L_g\mu_{f\mid
\mathcal{D}}	+	b}{\sqrt{1	+	L_g^2	\kappa_{f\mid\mathcal{D}}	}}\right)	>	\theta	\right\}	
%	
%\mathbb{E}\big[r(\mathcal{D}_\ast)\mid	x_\ast,	\mathcal{D}_t\big]	=	\sum_{g\in\mathcal{G}_t}
\Phi\lej(\frac{	L_g\mu_{f\mid\mathcal{D}}	+	b	-	\Phi^{-1}(\theta)\sqrt{1+L_g^2\kappa_{f\mid
\mathcal{D}_\ast}}}{\sqrt{V_{\ast\mid\mathcal{D}}^{-1}	L_g\kappa_{f\mid\mathcal{D}}(\cdot,x_
\ast)^2}}	\right)	

\newcommand{\deq}{\triangleq}	
\begin{tabular}{p{2.2in}}	
	
Tail	prob.	update:		
$$	
\wide#lde{T}_g	\deq	(T_g	|	\#lde{x},\#lde{y}).		
$$		
	
Expected	reward	to	collect	$\#lde{x}$:		
$$	
u(\#lde{x},g)	\deq	\mathbb{E}
\Big[\mathbbm{1}\Big(\wide#lde{T}_g		>	\theta	\Big)	
\Big],		
$$	
where	this	is	marginalized:		
$$	
\#lde{y}	|	\#lde{x}	\sim	\mathcal{N}
\Big(\mu(\#lde{x}),	\kappa(\#lde{x},\#lde{x})+
\sigma_n^2	\Big).	
$$	
	
\end{tabular}	 %r=0		

%\quad\Rightarrow\quad	
%	\dfrac{\par#al	u}{\par#al	\#lde{\nu}}	>	
0		
%\\	
\#lde{\beta}^2	=	\beta^2	-	\#lde{\nu}^2	

				Mo4va4on		_	

%f	\;	\sim	\;	\mathcal{GP}
(\mu(\cdot),\kappa(\cdot,\cdot))	
%	
%h_g(f)	=	\mbox{Pr}	(f|
_{\mathcal{X}_g}	\mbox{	matches	
pa.ern})	
%	
%r(\mathcal{D})	=	\sum\nolimits_g	
\mathbbm{1}\big\{\mathbb{E}
\big[h_g(f)\mid	\mathcal{D}\big]	>	
\theta	\big\}	
%	
%f|_{\mathcal{X}_g}	

q  Independent	Region	with	Analy#cal	Solu#on	
•  Then	the	analy#cal	result	is	monotone	in	both															and	
•  Comparing	two	selec#ons	in	two	regions,	if	both	regions	can	be	equally	

explored,	with	equal																	,	then	select	the	region	with	a	larger	
marginal	probability	of	a	posi#ve	outcome.	

•  If	two	regions	have	the	same	marginal	probability,	with	equal									,	then	
select	the	region	having	a	larger	variance	reduc#on	ra#o.	

We	want	to	find	vor#ces	in	a	2d	map	of	fluid	flow	by	
observing	point	vectors.	Regions	are	overlapping	squares.	

Mean	and	standard	error	of	recall	for	matching	
regions,	over	15	runs.	True	labels	are	determined	
by	using	the	classifier	on	the	full	velocity	dataset.	

Define:	

We	have:	

(equivalent	def.)	

				Algorithm	_	

Choose	point	to	greedily	maximize	expected	reward	

Es#mate	expected	reward	with	Monte	Carlo:	

Sample	enough	of	f	to	get	h	output	

Sample	observa#on	

Analy#cal	form:		

and	Lg	is	linear,	e.g.			

where	𝚽	is	normal	cdf	If	

then	expected	reward	has	a	closed	form:	

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Used	a	2-layer	neural	network	learned	
from	a	small	training	set:	

The	velocity	dataset;	each	arrow	represents	the	mean	of	
a	2x2	square.	This	run	was	ini#alized	with	the	points	at	
the	green	circles	and	selected	the	ones	at	the	red	circles.	

0	 Inputs:	

•  Ac#ve	search:	filter	as	many	posi#ves	as	possible.	
•  Poin#llism:	point	observa#ons,	group	pa.erns.	
•  Flexibility:	allow	for	arbitrarily	defined	pa.erns.	

				Applica4ons		_	
•  Environment:	autonomous	boats	searching	a	pond	for	polluted	areas.	
•  Astronomy:	choosing	where	to	point	a	telescope	to	find	interes#ng	objects.	
•  Polling:	carefully	surveying	to	find	electoral	races	that	need	a.en#on.	

				Related	Work		_	
Most	Bayesian	op#miza#on:	
•  Models	func#ons	with	GPs.	
•  Maximizes	observable	point	values.	
	
Ac#ve	search	(e.g.	Garne.	et	al.,	ICML	2012)	

•  Usually	assumes	that	labels	are	
directly	observable	and	correspond	
to	single	points.	

template	
observa#ons	posterior	draws	

X	 ✓	 ✓	

LabII InAutII

By	doing	precinct-level	(“point”)	polling,	can	we	find	
districts	(green	bordered	regions)	where	we’ll	win?	

				Finding	Winning	Districts	_	

Yifei Ma, Dougal J. Sutherland, Roman Garnett, Jeff Schneider

tives, Pennsylvania House of Representatives, and Penn-
sylvania State Senate races; the demographic/geographic
kernel was multiplied by a positive-definite covariance ma-
trix amongst the races. We learned the hyperparameters for
this kernel by maximizing the likelihood of the model on
full 2008 election data.

Given the kernel, we set up experiments to predict 2010
races based on surveying an individual voting precinct at a
time. For simplicity, we assume that a given voting precinct
can be thoroughly surveyed (and ignore turnout effects,
voters changing their minds over time, and so on); thus ob-
servations were made with the true vote share. We seeded
the experiment with a random 10 (out of 16 226) districts
observed; APPS selected from a random subset of 100 pro-
posals at each step. We again used ✓ = 0.7.

Figure 4: Recalls for election prediction. Color bands show
standard errors after 15 runs.

Figure 4 shows the mean and standard errors of 15 runs.
APPS outperforms both random and uncertainty sampling
here, though in this case the margin over random sampling
is much narrower. This is probably because the portion of
regions which are positive in this problem is much higher,
so more points are informative.

Uncertainty sampling is in fact worse than random here,
which is not too surprising because the purely explorative
nature of UNC is even worse on the high dimensional input
space of this problem.

LSE and AAS are not applicable to this problem, as they
have no notion of weighting points (by population).

4.3 Finding Vortices (Black-Box Classifier)

We now turn to more complex pattern classifiers by studying
the task of identifying vortices in a vector field based on
limited observations of flow vectors. Linear classifiers are
insufficient for this problem,4 so we will demonstrate the

4The set of vortices is not convex: consider the midpoint be-
tween a clockwise vortex and its identical counter-clockwise case.

flexibility of our approach with a black-box classifier.

To illustrate this setting, we consider the results of a large-
scale simulation of a turbulent fluid in three dimensions over
time in the Johns Hopkins Turbulence Databases5 [13]. Fol-
lowing Sutherland et al. [16], we aim to recognize vortices
in two-dimensional slices of the data at a single timestep,
based on the same small training set of 11 vortices and 20
non-vortices, partially shown in Figure 5(a).

Recall that h
g

assigns probability estimates to the entire
function class F confined to region g. Unlike the previous
examples, it is insufficient to consider only a weighted in-
tegral of f . Instead, though, we can consider the average
flow across sectors (angular slices from the center) of our
region as building blocks in detecting vortices. We count
how many sectors have clockwise/counter-clockwise flows
to give a classification result, in three steps:

1. First, we divide a region into K sectors. In each sector,
we take the integral of the inner product between the
actual flow vectors and a template. The template is
an “ideal” vortex, but with larger weights in the center
than the periphery. This produces a K-dimensional
summary statistic L

g

(f) for each region.

2. Next, we improve robustness against different flow
speeds in the data by scaling L

g

(f) to have maximum
entry 1, and flip its sign if its mean is negative. Call
the result ˜L

g

(f).

3. Finally, we feed the normalized ˜

L

g

(f) vector through
a 2-layer neural network of the form

h

g

(f) = �

wout

KX

i=1

�

⇣
win ˜Lg

(f)

i

+ bin

⌘
+ bout

!
,

where � is the logistic sigmoid function.

L

g

(f) | D obeys a K-dimensional multivariate normal dis-
tribution, from which we can sample many possible L

g

(f),
which we then normalize and pass through the neural net-
work as described above. This gives samples of probabilities
h

g

, whose mean is a Monte Carlo estimate of (2).

We used K = 4 sectors, and the weights in the template
were fixed such that the length scale matches the distance
from the center to an edge. The network was optimized for
classification accuracy on the training set. We then identified
a 50⇥ 50-pixel slice of the data that contains two vortices,
some other “interesting” regions, and some “boring” regions,
mostly overlapping with Figure 11 of Sutherland et al. [16];
the region, along with the output of the classifier when given
all of the input points, is shown in Figure 5(b). We then ran
APPS, initialized with 10 uniformly random points, for 200
steps. We defined the regions to be squares of size 11⇥ 11

and spaced them every 2 points along the grid, for 400 total
5
http://turbulence.pha.jhu.edu

Using	demographic	data	of	each	precinct,	made	Gaussian	
process	for	all	precincts.	District	result	will	be	an	average	
from	its	precincts,	weighted	by	number	of	voters.	The	
classifier	is	probit-linear.	

Recall	for	elec#on	predic#on.	Color	bands	show	
standard	errors	ajer	15	runs.	Uneven	weights	cause	
uncertainty	sampling	to	underperform	random.	

				Finding	Polluted	Regions	_	
Active Pointillistic Pattern Search

(a) data in one run and true matching regions (black) (b) APPS collected data and posterior region probability

Figure 2: Illustration of dataset and APPS selections for one run. A point marks the location of a measurement whose value
is also reflected in its color. Every grid box is a region whose possibility of matching is reflected on gray-scale.

Figure 3: Recall curves for pond monitoring experiment.
Color bands show standard errors after 15 runs.

collecting data in a region if there is enough confidence, but
does not specifically try to push regions over the threshold,
and so its performance on this objective is inferior.

Last in the comparison are RAND and UNC. It is interest-
ing to observe that RAND was initially better than, but later
crossed by UNC. In the beginning, since UNC is purely
explorative, its reward uniformly remained low across mul-
tiple runs, whereas in some runs RAND queries can be lucky
enough to concentrate around matching regions. At a later
phase, RAND faces the coupon collector’s problem and may
select redundant boring observations, when UNC keeps mak-
ing progress at a constant rate.

Figure 2(b) illustrates the selection locations for our APPS
method. This plot shows that our APPS method can obtain
reasonable data to both explore the available space and gain
enough information around the matching regions.

4.2 Predicting Election Results (Linear Classifier)

Consider the problem of a state-level political party official
who wishes to determine which races will be won, lost, or
might go either way. As surveying likely voters is relatively
expensive, we would like to do so with as few surveys as
possible.

In a simple model of this problem, the problem of finding
races which will be won is a natural fit to a classifier of the
form h

g

(f) = �

�
w

T
f(⌅

g

) + b

g

�
. Our function f maps

from the voting precincts in the state to the vote share of a
given party in that district, with a covariance kernel defined
by demographic similarity and geographic proximity. To
account for multiple races taking place in each district (e.g.,
state and national legislators), we duplicate each precinct
with a flag for the type of election. If g is the set of all
precincts participating in a particular race and w

g

is some
constant c times the voting population of each precinct, then
w

T
f(⌅

g

) gives c times the total vote portion for the given
party in that election. In a simple model which ignores
turnout effects, the probability of winning a race is essen-
tially 1 if the underlying proportion is greater than 0.5 and
0 otherwise; this can be accomplished by setting c to some
fairly large constant, say 100, and b = � 1

2c. (An equally
simple model that nonetheless more thoroughly accounts
for unmodeled effects would just use a smaller value of c.)

We ran experiments based on this model on 2010 Pennsyl-
vania election returns [1]. For each voting precinct in the
dataset, we used the 2010 Decennial Census [18] to obtain
a total population count and percentages of the population
for gender, race, age, and housing type categories; we also
added an (x, y) location based on a Lambert conformal
conic projection of point in the precinct, and used these
features in a squared-exponential kernel. The data for each
precinct was then replicated three times and associated with
Democratic vote shares for its U.S. House of Representa-

Active Pointillistic Pattern Search

(a) data in one run and true matching regions (black) (b) APPS collected data and posterior region probability

Figure 2: Illustration of dataset and APPS selections for one run. A point marks the location of a measurement whose value
is also reflected in its color. Every grid box is a region whose possibility of matching is reflected on gray-scale.

Figure 3: Recall curves for pond monitoring experiment.
Color bands show standard errors after 15 runs.

collecting data in a region if there is enough confidence, but
does not specifically try to push regions over the threshold,
and so its performance on this objective is inferior.

Last in the comparison are RAND and UNC. It is interest-
ing to observe that RAND was initially better than, but later
crossed by UNC. In the beginning, since UNC is purely
explorative, its reward uniformly remained low across mul-
tiple runs, whereas in some runs RAND queries can be lucky
enough to concentrate around matching regions. At a later
phase, RAND faces the coupon collector’s problem and may
select redundant boring observations, when UNC keeps mak-
ing progress at a constant rate.

Figure 2(b) illustrates the selection locations for our APPS
method. This plot shows that our APPS method can obtain
reasonable data to both explore the available space and gain
enough information around the matching regions.

4.2 Predicting Election Results (Linear Classifier)

Consider the problem of a state-level political party official
who wishes to determine which races will be won, lost, or
might go either way. As surveying likely voters is relatively
expensive, we would like to do so with as few surveys as
possible.

In a simple model of this problem, the problem of finding
races which will be won is a natural fit to a classifier of the
form h

g

(f) = �

�
w

T
f(⌅

g

) + b

g

�
. Our function f maps

from the voting precincts in the state to the vote share of a
given party in that district, with a covariance kernel defined
by demographic similarity and geographic proximity. To
account for multiple races taking place in each district (e.g.,
state and national legislators), we duplicate each precinct
with a flag for the type of election. If g is the set of all
precincts participating in a particular race and w

g

is some
constant c times the voting population of each precinct, then
w

T
f(⌅

g

) gives c times the total vote portion for the given
party in that election. In a simple model which ignores
turnout effects, the probability of winning a race is essen-
tially 1 if the underlying proportion is greater than 0.5 and
0 otherwise; this can be accomplished by setting c to some
fairly large constant, say 100, and b = � 1

2c. (An equally
simple model that nonetheless more thoroughly accounts
for unmodeled effects would just use a smaller value of c.)

We ran experiments based on this model on 2010 Pennsyl-
vania election returns [1]. For each voting precinct in the
dataset, we used the 2010 Decennial Census [18] to obtain
a total population count and percentages of the population
for gender, race, age, and housing type categories; we also
added an (x, y) location based on a Lambert conformal
conic projection of point in the precinct, and used these
features in a squared-exponential kernel. The data for each
precinct was then replicated three times and associated with
Democratic vote shares for its U.S. House of Representa-

Active Pointillistic Pattern Search

(a) data in one run and true matching regions (black) (b) APPS collected data and posterior region probability

Figure 2: Illustration of dataset and APPS selections for one run. A point marks the location of a measurement whose value
is also reflected in its color. Every grid box is a region whose possibility of matching is reflected on gray-scale.

Figure 3: Recall curves for pond monitoring experiment.
Color bands show standard errors after 15 runs.

collecting data in a region if there is enough confidence, but
does not specifically try to push regions over the threshold,
and so its performance on this objective is inferior.

Last in the comparison are RAND and UNC. It is interest-
ing to observe that RAND was initially better than, but later
crossed by UNC. In the beginning, since UNC is purely
explorative, its reward uniformly remained low across mul-
tiple runs, whereas in some runs RAND queries can be lucky
enough to concentrate around matching regions. At a later
phase, RAND faces the coupon collector’s problem and may
select redundant boring observations, when UNC keeps mak-
ing progress at a constant rate.

Figure 2(b) illustrates the selection locations for our APPS
method. This plot shows that our APPS method can obtain
reasonable data to both explore the available space and gain
enough information around the matching regions.

4.2 Predicting Election Results (Linear Classifier)

Consider the problem of a state-level political party official
who wishes to determine which races will be won, lost, or
might go either way. As surveying likely voters is relatively
expensive, we would like to do so with as few surveys as
possible.

In a simple model of this problem, the problem of finding
races which will be won is a natural fit to a classifier of the
form h

g

(f) = �

�
w

T
f(⌅

g

) + b

g

�
. Our function f maps

from the voting precincts in the state to the vote share of a
given party in that district, with a covariance kernel defined
by demographic similarity and geographic proximity. To
account for multiple races taking place in each district (e.g.,
state and national legislators), we duplicate each precinct
with a flag for the type of election. If g is the set of all
precincts participating in a particular race and w

g

is some
constant c times the voting population of each precinct, then
w

T
f(⌅

g

) gives c times the total vote portion for the given
party in that election. In a simple model which ignores
turnout effects, the probability of winning a race is essen-
tially 1 if the underlying proportion is greater than 0.5 and
0 otherwise; this can be accomplished by setting c to some
fairly large constant, say 100, and b = � 1

2c. (An equally
simple model that nonetheless more thoroughly accounts
for unmodeled effects would just use a smaller value of c.)

We ran experiments based on this model on 2010 Pennsyl-
vania election returns [1]. For each voting precinct in the
dataset, we used the 2010 Decennial Census [18] to obtain
a total population count and percentages of the population
for gender, race, age, and housing type categories; we also
added an (x, y) location based on a Lambert conformal
conic projection of point in the precinct, and used these
features in a squared-exponential kernel. The data for each
precinct was then replicated three times and associated with
Democratic vote shares for its U.S. House of Representa-

This	is	the	actual	data	of	dissolved	
oxygen	(DO)	measurements	that	is	
densely-collected	from	a	pond.	
We	define	regions	to	be	the	
rectangles	with	black	borders	that	
cover	the	map;	the	real	polluted	
regions	are	colored	in	black.	

We	could	recall	75%	of	the	
polluted	regions	(black)	
with	200	ac#vely	collected	
measurements.	The	dot	
colors	indicate	DO	values.		

Recall	curves	for	pond	
monitoring	experiment.	
Shaded	bands	show	
standard	errors	ajer	15	
runs.	

Ac#ve	Area	Search	(Ma	et	al.,	AISTATS	2014)	

•  Similar	setup	and	algorithm,	but	can	only	
detect	thresholds	on	mean	of	a	region.	

•  APPS	generalizes	to	any	pa.ern.	
	
Level	set	es#ma#on	(Gotovos	et	al.,	IJCAI	‘13;	Low	et	al.,	
AAMAS	‘12)	
•  Ac#vely	finds	a	par#cular	level	set	in	a	func#on.	
•  Related	to	AAS;	can’t	model	arbitrary	pa.erns.	

The	algorithm	picks	regions	with	a	certain	tradeoff	between:	
•  Ra#o	of	variance	reduc#on	with	one	more	point.	
•  High	posterior	mean.	

Within	a	region,	it	picks	the	point	that:	
•  Is	most	correlated	to	region’s	label.	
•  Equivalently,	most	increases	the	power	of	the	hypothesis	test.	

				Analysis		_	If	using	probit-linear	classifiers	and	regions	are	independent:	

f(x1) f(x2) f(xn)

1	 Select	loca#ons	to	observe	func#on	values	

Regions	{Xg}Gg=1 Classifier	h(f ;Xg)

2	 Collect	reward	for	region	matches	
rt =

X
g

�
E
⇥
h(f ;Xg) | x1:t, y1:t

⇤
> ✓

Prior	f ⇠ GP(µ(·),(·, ·))

*:	equal	contribu#on	

number of data points collected
0 25 50 75 100 125 150 175 200 225 250 275 300

re
ca

ll
fo

r m
at

ch
in

g
re

gi
on

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
APPS (analytical)
APPS (sample)
LSE
Unc
Rand

max

x⇤
E
y⇤

hX
g2Gt

�
E
⇥
h(f ;X

g

) | x1:t, x⇤, y1:t, y⇤
⇤
> ✓

 i

z⇤ ⇠ N
⇣
µt(x⇤), t(x⇤, x⇤) + �

2
⌘

f ⇠ GP (µ⇤,⇤)

hg(f) = �
⇣
Lgf + b

⌘

L

g

f =

Z

x2Xg

w

g

(x)Tf(x) dx

Ey⇤r⇤ =
X

g

�

0

@
Lgµt + b�

q
1 + L

2
g⇤��1(✓)

��
Lg [t(·, x⇤)]

��
/

p
t(x⇤, x⇤) + �

2

1

A

