
Temporal-Contextual Recommendation
in Real-Time

Yifei Ma* Balakrishnan (Murali) Narayanaswamy*

Haibin Lin Hao Ding

yifeim@amazon.com

*Equal contribution authors

Objective

• Real-time recommendation without ML/DL experience
• One network architecture to fit most application scenarios

1

Background
• Most rec sys are built from user/item latent representations

• Sequence models with ordered user histories

• However, there are still gaps in practice
• Metadata
• Temporal drifts

user item<-

Memory

2

Our Contributions

3

Temporal

ContextualDebiased

Time-delta changes
Explicit contexts

Continuous item cold-start
Negative sampling Recommend by

item meta-data

Sequence Model and Context Changes

• Exponential Moving Average (EMA) – smooth changes in context

• Gating Recurrent Units (GRUs) – implicit context changes

• Back Propagation Through Time (BPTT) – active memory of ~15 items

Marry has a little lamb

Subject Verb Object

4

?
Hierarchical Recurrent Network Learned User

Representation

5

Explicit Context Changes

👍Skip connection achieves long-term memory effects [Quadrana et al., 2017]
👎Slower in minibatch training due to irregular computation flows

Remap time-delta as RNN input?
Efficient implementation inspired from https://gluon-nlp.mxnet.io/

https://gluon-nlp.mxnet.io/

Recommendation Changes with Time-Delta

• Δt between last visit and next recommendation
• As Δt increases, items become more general

4.1 Meta-Data Models
Table 1 evaluates the full meta-data model from Figure 3. The results
show that each modeling aspect was useful. We use movielens
data (ml-20m) as a public, real-world dataset for movie recom-
mendations. It contains 20 million interactions, 131 263 items,2 and
138 493 unique users. We split the data by user into 80% train and
validation set and 20% test set, and hold out interactions from the
last few time steps (a temporal hold out) of the validation set. Table 1
shows that our vanilla RNN implementation achieved 3x the perfor-
mance of popularity baseline, i.e., PPL 447 versus 2228, similar to
[5].3 The meta data model also improved the prediction accuracy,
decreasing PPL to 429 and 410. Here, item features were the movie
genre vectors, interaction feedback were the standardized rating
values. Notice, using just the item features of the last item the user
interacted with (row 2), improved over the popularity baseline to
PPL 1342, showing that the model can personalize recommenda-
tions based on just the genre of the user’s last interaction.

Table 1: Using meta-data lowers the PPL, which indicates a
higher likelihood of recommending relevant items on ml-
20m. For details on the toy dataset see the extended version.

Seq User Item Feedback Toy ml-20m

⇥ ⇥ ⇥ ⇥ 100 2228
⇥ ⇥ X ⇥ 54 1342
X ⇥ ⇥ ⇥ 3 447
X X X X 1 410

4.2 Hierarchies, Sessions and Time
Hierarchical models are based on the hypothesis that users tend to
have similar intentswithin-session andmay change intents between
sessions. During training, hierarchical models provide short gra-
dient paths across sessions avoiding vanishing gradients and thus
allowing models to have longer memory. We investigate if HRNNs
trained on MovieLens do indeed learn such a temporal pattern. As a
qualitative example, we consider a user who watched the following
titles: Secret of Roan Inish (Children|Drama|Fantasy|Mystery) , Post-
man (Comedy|Drama|Romance), Thin Blue Line (Documentary),
Say Anything... (Comedy|Drama|Romance) and Babe: Pig in the
City (Children|Comedy). In Table 2 we see that for the same item
watch history HRNN-meta generates di�erent recommendations
for di�erent time-delta gaps between last interaction and recom-
mendation time, indicating that the model has learned to place
some weight on the temporal inputs. When the recommendation is
made by HRNN within session, i.e. when a short time delta is used
at query time, the theme of the recommended item stays relatively
similar to the last watched item. When the input session control
indicates a large time delta or hierarchy, the recommended genres
tend to be more diverse, i.e., diminishing personalization e�ects, as
expected. Note, the popularity is not monotonic for shorter time
deltas, making this statement subjective.
2We treat the size of the index space as the number of items despite only 26 744 unique
items being included in the interaction data.
3There are no standard temporal train-test splits on ml-20m, so we cannot make a
more direct comparison.

Table 2: Top-1 recommendation to the same user changes as
the inference time changes. As time between last click and
inference increases, the recommendations change but stay
in the genres the user has interacted with.

�C title genres popularity

0 Purple Rose of Cairo Comedy|Drama 0.000236
60 Unbearable Lightness Drama 0.000209

3600 Local Hero Comedy 0.000195
86400 Big Comedy|Drama 0.001130

Table 3: Hit@5 on the Reddit dataset. We pick one-hour
browsing gaps as sessions break signals. We observe perfor-
mance improvements as the session-basedmodel gains com-
plexity. The eventual performance also depends on other
factors such as the size of the hidden states. Hierarchical
models improve performance for small model sizes.

GRU HRNN HGRU Pop BPR5

50 hidden 0.26 0.42 0.47 0.11 0.39200 hidden 0.55 0.55 0.55

4.3 RNNs vs. HRNNs
To see if hierarchies are useful, we compare the three models – a
vanilla GRU, HRNN with input encoding and a Hierarchical GRU
on a Reddit dataset4, where some prior work has indicated the
value of hierarchies [23]. The dataset contains users, subreddits
they interacted with and the timestamps of those interactions. The
dataset has 18 271 users and 27 452 items, results are in Table 3. We
use the same train and test splits as in [23]. Similar to [23], we see
that for small hidden sizes (50), HGRU and HRNN substantially
outperform vanilla RNN. HRNN is 10 times faster than HGRU, about
as fast as an RNN. A preliminary conclusion is that allowing the
model to learn to encode the input timestamps provides much of
the bene�t of HGRU at a substantially lower computational cost.

We then experimented with larger hidden layer sizes and alter-
native algorithms. We see that BPR performs much better than
initially reported GRU numbers in [23]. With hidden layer size of
200, our GRU substantially improves over HGRU with small hidden
dimension and BPR. Incremental improvements with HRNN and
HGRU on this dataset were small. We conclude that, given su�-
cient data, a large RNN performs well even for datasets which seem
to have substantial session level e�ects. In Section 4.6 we explore
improving the scaling and throughput of large RNN models.

We next test feedback encoding - the ability to encode and use
the type or quality of interaction - within the context of sequential
rating predictions, with results in Table 4. In this task we predict
the rating of each item the user interacts with, and use Root Mean
Square Error (RMSE) between the true rating the user assigned
to the item and the predicted rating, to measure performance (lower
is better). Standard RNNs without feedback encoding are unaware
of the user rating patterns and do not outperform a rolling average

4https://www.kaggle.com/colemaclean/subreddit-interactions

6

F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens Datasets: History and Context. ACM Transactions on Interactive
Intelligent Systems (TiiS) 5, 4, Article 19 (December 2015), 19 pages. http://dx.doi.org/10.1145/2827872

http://dx.doi.org/10.1145/2827872

?
Hierarchical Recurrent Network Learned User

Representation

Synthetic Memory Benchmark

Reoccurring purchase after a noisy session; memory capacity = t
RNN: not sensitive to explicit context changes
HGRU [Quadrana et al.]: 50<t<60
Irregular computation flows 10x slower
HRNN [ours]: 10<t<20
(Meet most use-cases)

7

Speed and Performance Trade-Offs

• Subreddit-interactions prediction (18271 users, 27453 subreddits)
• HRNN: GRU + time-delta (ours)
• HGRU: GRU + time-delta + hierarchy
• HRNN (ours) meets most use cases

Hit@5 on reddit recommendation

4.1 Meta-Data Models
Table 1 evaluates the full meta-data model from Figure 3. The results
show that each modeling aspect was useful. We use movielens
data (ml-20m) as a public, real-world dataset for movie recom-
mendations. It contains 20 million interactions, 131 263 items,2 and
138 493 unique users. We split the data by user into 80% train and
validation set and 20% test set, and hold out interactions from the
last few time steps (a temporal hold out) of the validation set. Table 1
shows that our vanilla RNN implementation achieved 3x the perfor-
mance of popularity baseline, i.e., PPL 447 versus 2228, similar to
[5].3 The meta data model also improved the prediction accuracy,
decreasing PPL to 429 and 410. Here, item features were the movie
genre vectors, interaction feedback were the standardized rating
values. Notice, using just the item features of the last item the user
interacted with (row 2), improved over the popularity baseline to
PPL 1342, showing that the model can personalize recommenda-
tions based on just the genre of the user’s last interaction.

Table 1: Using meta-data lowers the PPL, which indicates a
higher likelihood of recommending relevant items on ml-
20m. For details on the toy dataset see the extended version.

Seq User Item Feedback Toy ml-20m

⇥ ⇥ ⇥ ⇥ 100 2228
⇥ ⇥ X ⇥ 54 1342
X ⇥ ⇥ ⇥ 3 447
X X X X 1 410

4.2 Hierarchies, Sessions and Time
Hierarchical models are based on the hypothesis that users tend to
have similar intentswithin-session andmay change intents between
sessions. During training, hierarchical models provide short gra-
dient paths across sessions avoiding vanishing gradients and thus
allowing models to have longer memory. We investigate if HRNNs
trained on MovieLens do indeed learn such a temporal pattern. As a
qualitative example, we consider a user who watched the following
titles: Secret of Roan Inish (Children|Drama|Fantasy|Mystery) , Post-
man (Comedy|Drama|Romance), Thin Blue Line (Documentary),
Say Anything... (Comedy|Drama|Romance) and Babe: Pig in the
City (Children|Comedy). In Table 2 we see that for the same item
watch history HRNN-meta generates di�erent recommendations
for di�erent time-delta gaps between last interaction and recom-
mendation time, indicating that the model has learned to place
some weight on the temporal inputs. When the recommendation is
made by HRNN within session, i.e. when a short time delta is used
at query time, the theme of the recommended item stays relatively
similar to the last watched item. When the input session control
indicates a large time delta or hierarchy, the recommended genres
tend to be more diverse, i.e., diminishing personalization e�ects, as
expected. Note, the popularity is not monotonic for shorter time
deltas, making this statement subjective.
2We treat the size of the index space as the number of items despite only 26 744 unique
items being included in the interaction data.
3There are no standard temporal train-test splits on ml-20m, so we cannot make a
more direct comparison.

Table 2: Top-1 recommendation to the same user changes as
the inference time changes. As time between last click and
inference increases, the recommendations change but stay
in the genres the user has interacted with.

�C title genres popularity

0 Purple Rose of Cairo Comedy|Drama 0.000236
60 Unbearable Lightness Drama 0.000209

3600 Local Hero Comedy 0.000195
86400 Big Comedy|Drama 0.001130

Table 3: Hit@5 on the Reddit dataset. We pick one-hour
browsing gaps as sessions break signals. We observe perfor-
mance improvements as the session-basedmodel gains com-
plexity. The eventual performance also depends on other
factors such as the size of the hidden states. Hierarchical
models improve performance for small model sizes.

GRU HRNN HGRU Pop BPR5

50 hidden 0.26 0.42 0.47 0.11 0.39200 hidden 0.55 0.55 0.55

4.3 RNNs vs. HRNNs
To see if hierarchies are useful, we compare the three models – a
vanilla GRU, HRNN with input encoding and a Hierarchical GRU
on a Reddit dataset4, where some prior work has indicated the
value of hierarchies [23]. The dataset contains users, subreddits
they interacted with and the timestamps of those interactions. The
dataset has 18 271 users and 27 452 items, results are in Table 3. We
use the same train and test splits as in [23]. Similar to [23], we see
that for small hidden sizes (50), HGRU and HRNN substantially
outperform vanilla RNN. HRNN is 10 times faster than HGRU, about
as fast as an RNN. A preliminary conclusion is that allowing the
model to learn to encode the input timestamps provides much of
the bene�t of HGRU at a substantially lower computational cost.

We then experimented with larger hidden layer sizes and alter-
native algorithms. We see that BPR performs much better than
initially reported GRU numbers in [23]. With hidden layer size of
200, our GRU substantially improves over HGRU with small hidden
dimension and BPR. Incremental improvements with HRNN and
HGRU on this dataset were small. We conclude that, given su�-
cient data, a large RNN performs well even for datasets which seem
to have substantial session level e�ects. In Section 4.6 we explore
improving the scaling and throughput of large RNN models.

We next test feedback encoding - the ability to encode and use
the type or quality of interaction - within the context of sequential
rating predictions, with results in Table 4. In this task we predict
the rating of each item the user interacts with, and use Root Mean
Square Error (RMSE) between the true rating the user assigned
to the item and the predicted rating, to measure performance (lower
is better). Standard RNNs without feedback encoding are unaware
of the user rating patterns and do not outperform a rolling average

4https://www.kaggle.com/colemaclean/subreddit-interactions

https://www.kaggle.com/colemaclean/subreddit-interactions

8

+0.16
+0.05 10x slower

https://www.kaggle.com/colemaclean/subreddit-interactions

Speed and Performance Trade-Offs

• Subreddit-interactions prediction (18271 users, 27453 subreddits)
• HRNN: GRU + time-delta (ours)
• HGRU: GRU + time-delta + hierarchy
• HRNN (ours) meets most use cases

• Caveat:
• Largest benefit comes from model tuning
• Public datasets have limited complexity

+0.16
+0.05

+0.29

Hit@5 on reddit recommendation

4.1 Meta-Data Models
Table 1 evaluates the full meta-data model from Figure 3. The results
show that each modeling aspect was useful. We use movielens
data (ml-20m) as a public, real-world dataset for movie recom-
mendations. It contains 20 million interactions, 131 263 items,2 and
138 493 unique users. We split the data by user into 80% train and
validation set and 20% test set, and hold out interactions from the
last few time steps (a temporal hold out) of the validation set. Table 1
shows that our vanilla RNN implementation achieved 3x the perfor-
mance of popularity baseline, i.e., PPL 447 versus 2228, similar to
[5].3 The meta data model also improved the prediction accuracy,
decreasing PPL to 429 and 410. Here, item features were the movie
genre vectors, interaction feedback were the standardized rating
values. Notice, using just the item features of the last item the user
interacted with (row 2), improved over the popularity baseline to
PPL 1342, showing that the model can personalize recommenda-
tions based on just the genre of the user’s last interaction.

Table 1: Using meta-data lowers the PPL, which indicates a
higher likelihood of recommending relevant items on ml-
20m. For details on the toy dataset see the extended version.

Seq User Item Feedback Toy ml-20m

⇥ ⇥ ⇥ ⇥ 100 2228
⇥ ⇥ X ⇥ 54 1342
X ⇥ ⇥ ⇥ 3 447
X X X X 1 410

4.2 Hierarchies, Sessions and Time
Hierarchical models are based on the hypothesis that users tend to
have similar intentswithin-session andmay change intents between
sessions. During training, hierarchical models provide short gra-
dient paths across sessions avoiding vanishing gradients and thus
allowing models to have longer memory. We investigate if HRNNs
trained on MovieLens do indeed learn such a temporal pattern. As a
qualitative example, we consider a user who watched the following
titles: Secret of Roan Inish (Children|Drama|Fantasy|Mystery) , Post-
man (Comedy|Drama|Romance), Thin Blue Line (Documentary),
Say Anything... (Comedy|Drama|Romance) and Babe: Pig in the
City (Children|Comedy). In Table 2 we see that for the same item
watch history HRNN-meta generates di�erent recommendations
for di�erent time-delta gaps between last interaction and recom-
mendation time, indicating that the model has learned to place
some weight on the temporal inputs. When the recommendation is
made by HRNN within session, i.e. when a short time delta is used
at query time, the theme of the recommended item stays relatively
similar to the last watched item. When the input session control
indicates a large time delta or hierarchy, the recommended genres
tend to be more diverse, i.e., diminishing personalization e�ects, as
expected. Note, the popularity is not monotonic for shorter time
deltas, making this statement subjective.
2We treat the size of the index space as the number of items despite only 26 744 unique
items being included in the interaction data.
3There are no standard temporal train-test splits on ml-20m, so we cannot make a
more direct comparison.

Table 2: Top-1 recommendation to the same user changes as
the inference time changes. As time between last click and
inference increases, the recommendations change but stay
in the genres the user has interacted with.

�C title genres popularity

0 Purple Rose of Cairo Comedy|Drama 0.000236
60 Unbearable Lightness Drama 0.000209

3600 Local Hero Comedy 0.000195
86400 Big Comedy|Drama 0.001130

Table 3: Hit@5 on the Reddit dataset. We pick one-hour
browsing gaps as sessions break signals. We observe perfor-
mance improvements as the session-basedmodel gains com-
plexity. The eventual performance also depends on other
factors such as the size of the hidden states. Hierarchical
models improve performance for small model sizes.

GRU HRNN HGRU Pop BPR5

50 hidden 0.26 0.42 0.47 0.11 0.39200 hidden 0.55 0.55 0.55

4.3 RNNs vs. HRNNs
To see if hierarchies are useful, we compare the three models – a
vanilla GRU, HRNN with input encoding and a Hierarchical GRU
on a Reddit dataset4, where some prior work has indicated the
value of hierarchies [23]. The dataset contains users, subreddits
they interacted with and the timestamps of those interactions. The
dataset has 18 271 users and 27 452 items, results are in Table 3. We
use the same train and test splits as in [23]. Similar to [23], we see
that for small hidden sizes (50), HGRU and HRNN substantially
outperform vanilla RNN. HRNN is 10 times faster than HGRU, about
as fast as an RNN. A preliminary conclusion is that allowing the
model to learn to encode the input timestamps provides much of
the bene�t of HGRU at a substantially lower computational cost.

We then experimented with larger hidden layer sizes and alter-
native algorithms. We see that BPR performs much better than
initially reported GRU numbers in [23]. With hidden layer size of
200, our GRU substantially improves over HGRU with small hidden
dimension and BPR. Incremental improvements with HRNN and
HGRU on this dataset were small. We conclude that, given su�-
cient data, a large RNN performs well even for datasets which seem
to have substantial session level e�ects. In Section 4.6 we explore
improving the scaling and throughput of large RNN models.

We next test feedback encoding - the ability to encode and use
the type or quality of interaction - within the context of sequential
rating predictions, with results in Table 4. In this task we predict
the rating of each item the user interacts with, and use Root Mean
Square Error (RMSE) between the true rating the user assigned
to the item and the predicted rating, to measure performance (lower
is better). Standard RNNs without feedback encoding are unaware
of the user rating patterns and do not outperform a rolling average

4https://www.kaggle.com/colemaclean/subreddit-interactions

9

10x slower

Contributions

10

Temporal

ContextualDebiased

Time-delta changes
Explicit contexts

Recommend by
item meta-data

Continuous item cold-start
Negative sampling

Recommend by Item Meta-Data

Factorization machines [Rendle 2011]: a game of point collection

Meta score = [context meta-data] * [item meta-data]
HRNN score = [user embedding] * [item embedding]
A hybrid model adapts to both types of data sources!

Item Rain No rain Wind No wind Scores
Umbrella (w1) 1 0 0 1 1
Jacket (w2) 1 0 1 0 0
Nothing (w3) 0 1 1 1 2
Context 0 1 0 1

11

Recommend New Movies in a Hold-Out Set

• Remove a random half of unique movies from training
• Expect similar genres top rank top within the hold-out set

• Limitations?
• When warm items present, underscore cold items due to low confidence

12

Genres in user history Genres in top-ranked hold-out movies

Contributions

13

Temporal

ContextualDebiased

Time-delta changes
Explicit contexts

Recommend by
item meta-data

Continuous item cold-start
Negative sampling

Temporal Drifts in Item Popularity

• In news or media domains, new items easily drive >50% of traffic;
• Count global item popularity in Time Intervals (T)

• T = 12 hours, 30 minutes, etc.
• Test with previous T
• Null = bootstrap from same T

• How to use the stale information?

14

0 2000
3opularity (12 hour)

0

1000

2000

3000
Bootstrap
popularity

Po
pu

la
rit

y
fr

om

la
st

 1
2

ho
ur

s

0 50
3opularity (30 Pin)

0

20

40

60

Po
pu

la
rit

y
fr

om

la
st

 3
0

m
in

ut
es

Bootstrap
popularity

Stale information
after T = 12 hours

No significant drifts
in T = 30 minutes

Item Trend Debiasing

We learn to attribute between:
P(exposure | freshness, popularity)
P(consumption | exposure, user preference)

Related to Inverse Propensity Scoring
More theoretical insights in [Ma et al., 2019]
Model inspired by [Wu et al., 2017]

consume

expose

popular
fresh

15

Negative Sampling

Vanilla RNN softmax on every item
sample from popular items + debiasing

consume

expose

popular
fresh

Table 8: HRNN throughput and accuracy. Bold-
fonts/underlines show signi�cant/insigni�cant di�erences,
respectively. IS signi�cantly improved model training for
up to 1M unique items (Taobao dataset). Additionally, the
densemodel for the Taobao dataset requires >16GBmemory
for BPTT, which is infeasible on many GPUs.

Output ml-1m ml-10m ml-20m Taobao

Output size IS 62 255 362 1087
(<) Dense 1683 65 134 131 263 1 183 451

Throughput IS 23k 20k 20k 7.8k
(#items/sec) Dense 23k 23k 17k 631

PPL IS 377 405 455 17.6k
Dense 409 439 494 119k

NDCG IS 0.128 0.123 0.12 0.15
Dense 0.123 0.119 0.115 0.08

We limited training time to 6 hours. Due to its higher throughput,
the IS-approx model yielded signi�cantly better performance on
the test set- a 6x improvement on the perplexity metric and 2x
increase in the NDCG@25 value.

From the throughput and accuracy experiments, we conclude
that when number of items< < 100: , recurrent layer computations
dominate the training time and IS-approximation is not useful.
When< � 1" , we see signi�cant improvements in throughput,
leading to much better model performance given the same amount
of training time.

Table 9: Comparing IS-approximated HRNN with other
large-scale methods. The values are comparable, suggesting
good recommendation quality, with the exception of HRNN
dense on Taobao dataset (>1" output size), which is so inef-
�cient that it failed to train in limited time (<6 hours).

ml-20m Taobao
p@10 r@10 p@200 r@200

YouTube product-DNN 11.87% 8.71% 1.48% 7.58%
TDM attention-DNN 14.06% 10.55% 2.00% 10.81%

HRNN dense 24.81% 11.16% 0.85% 3.97%
HRNN IS-approx 23.23% 10.87% 1.54% 7.97%

Our IS-approximated HRNN model performed about as well as
external benchmarks, suggesting good recommendation quality.
Exact comparisons are subject to other factors such as training time
and model complexity. For example, we trained for only 6 hours
with a generic IS sampler by raising the item frequencies to the
0.75-th power, whereas for the better performing state-of-the-art
TDM attention-DNN model [36] the original authors did not report
training time. We speculate that some data errors are possible: e.g.
we discovered negative time stamps in the dataset, which may add
some uncertainty to the benchmarks.

We conclude that IS approximations lead to large throughput
improvements and near-state-of-the-art results with short training
time (<6 hours). Two additional epochs in three hours improved

our results to p@200=1.66% and r@200=8.57%, respectively. We
believe the remaining performance gaps can be closed by additional
training time and/or better IS negative samplers. Our goal is to
achieve good results while reducing training time, so we do not
explore this further here. Besides [36], other possible improvements
include self-contrastive estimators [6] and IRGAN [31].

5 RELATEDWORK
Our work builds on seminal work on applying RNNs to recommen-
dation systems. GRU4Rec [11], and follow up work that demon-
strated the value of choosing appropriate loss funcitons and the
idea of using hierarchical models to capture long term inter-session
intent dynamics using HGRUs [20]. Ruocco et al. [23] extend the
study of hierarchical models to new datasets, and focus on speci�c
evaluations e.g. recommendations at the start of a new session.
While much of this prior work used GRUs, Donkers et al. [5] show
that a modi�ed recurrent unit can achieve better performance.

In this context our work further solidi�es the case that RNNs
are good models of user behaviour for next item recommendation.
We show that HRNNs where time is an input to the model, rather
than an enforced hierarchical structure achieve a good trade-o�
of e�ciency and accuracy. In addition, our focus is on dynamic
systems with meta-data and cold start, and we demonstrate the
scaling value on the meta-data and item space. Most related to our
work is by Li et al. [17], who model time-deltas in recurrent models,
but without making the connection to hierarchical sessions and do
not consider meta-data, cold start and IS.

For dynamic recommendation, Wu et al. [34] show the value of
capturing item popularity dynamics using item speci�c RNNs. We
show that much of this value can be captured using item popularity
as a bias term, and further that we can improve item cold-start
performance with item trend decomposition.

For meta-data modeling, we took inspiration from a few impor-
tant papers on FactorizationMachines [21], Deep&Cross models [7],
and TimeSVD++ [16]. These models are able to regress click/rating
values on the meta-data features from all user/item pairs, which
naturally extends to feature-based cold-start item recommenda-
tion. Additionally, while the models are proposed as non-sequence
models, it is natural and often important to represent user activity
histories as part of their features by “multi-hot”-encoding their past
items with exponential moving weights. However, these models
are not easy to extend to large item catalogs with millions of items.
We instead built on the formulation of Sedhain et al. [24], which
jointly outputs multiple rating predictions on multiple items in the
same minibatch. This allows for fast scoring on multiple items at
inference time, and allows us to use ranking losses as opposed to
regression or classi�cation losses.

Part of the reason for our choice of ranking loss over value re-
gression is summarized by [1] and the related work therein. The
main argument we rely on is that the desired goal should be to
contrast positive events against explicit negatives that are shown at
the same time, to cancel out the e�ects from confounding variables,
such as un-modeled seasonality and time varying item popularity.
When explicit negatives are unavailable, Bottou et al. [1] suggest
propensity �tting of the impression data from observed variables.
We extend the idea to solve the item cold-start problem in dynamic

10x speed-up; 2x better
performance in unit time https://tianchi.aliyun.com/dataset/dataDetail?dataId=64916

https://tianchi.aliyun.com/dataset/dataDetail%3FdataId=649

Bring Everything Together

17

Temporal

ContextualDebiased

Time-delta changes
Explicit contexts

Recommend by
item meta-data

Continuous item cold-start
Negative sampling

Case Study: Outbrain News Recommendation

23
Jun

2016

24 25 26
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

hi
t a

t 2
5

validation test 18

VS-KNN

Recent POP

[Ma et al., 2018]

https://www.kaggle.com/c/outbrain-click-prediction

14 days of news articles; Online VS-KNN > Offline GRU
[Ludewig & Jannach, 2018] https://github.com/mjugo/StreamingRec

Reproduce on larger set of items
Sample 1% of users
Filter user_activities >= 10
Filter item_views >= 100

Retain 4M views from
377k users & 31k items

session item<-

https://www.kaggle.com/c/outbrain-click-prediction
https://github.com/mjugo/StreamingRec

23
Jun

2016

24 25 26
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

hi
t a

t 2
5

Case Study: Outbrain News Recommendation

Item trend debiasing
Item freshness since release
Total views in last hour

Improves validation & test
with long histories & futures!

19validation test

VS-KNNOurs-Everything

Recent POP

[Ma et al., 2018]

Case Study: Outbrain News Recommendation

23
Jun

2016

24 25 26
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

hi
t a

t 2
5

20

Temporal

ContextualDebiased

validation test

Better fit

More stable

Ours-Everything

[Ma et al., 2018]

• [Ma et al., 2018]
• Ours-Everything

23
Jun

2016

24 25 26
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

hi
t a

t 2
5

Case Study: Outbrain News Recommendation

VS-KNN depends on good cold-start item recs in the first place

104 105 106

item freshness in seconds

0.3

0.4

0.5

0.6

0.7

0.8

hi
t a

t 2
5

hour day week

Meta-data Online learning

validation test

VS-KNNOurs-Everything

Ours-Everything
VS-KNN

21

23
Jun

2016

24 25 26
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

hi
t a

t 2
5

Case Study: Outbrain News Recommendation

Retrained Ours-Everything seems to bridge the gaps.

104 105 106

item freshness in seconds

0.3

0.4

0.5

0.6

0.7

0.8

hi
t a

t 2
5

hour day week

validation test

VS-KNNOurs-Everything

Retrain every 2 hours;
Delay by 1 hour;
Serve for 2 hours.

22

Conclusion

• Fill the practicality gap of session-aware RNN models
• Use temporal, contextual, side information
• Address time-varying confounding variables
• More theoretical details in paper
• Adopted by Amazon Personalize

https://github.com/aws-samples/amazon-
personalize-samples/

23

Temporal

ContextualDebiased

Time-delta
Contexts

Recommend by
item meta-data

Item cold-start
Negative sampling

https://github.com/aws-samples/amazon-personalize-samples/

