Temporal-Contextual Recommendation in Real-Time

Yifei Ma* Balakrishnan (Murali) Narayanaswamy*

Haibin Lin Hao Ding

yifeim@amazon.com

*Equal contribution authors

- Real-time recommendation without ML/DL experience
- One network architecture to fit most application scenarios

Background

• Most rec sys are built from user/item latent representations

• Sequence models with ordered user histories

- However, there are still gaps in practice
 - Metadata
 - Temporal drifts

Our Contributions

Sequence Model and Context Changes

• Exponential Moving Average (EMA) – smooth changes in context

• Gating Recurrent Units (GRUs) – implicit context changes

• Back Propagation Through Time (BPTT) – active memory of ~15 items

Explicit Context Changes

 Skip connection achieves long-term memory effects [Quadrana et al., 2017]
Slower in minibatch training due to irregular computation flows Remap time-delta as RNN input? Efficient implementation inspired from https://gluon-nlp.mxnet.io/

Recommendation Changes with Time-Delta

- Δt between last visit and next recommendation
- As Δt increases, items become more general

Δt	title	genres	popularity
0	Purple Rose of Cairo	Comedy Drama	0.000236
60	Unbearable Lightness	Drama	0.000209
3600	Local Hero	Comedy	0.000195
86400	Big	Comedy Drama	0.001130

F. Maxwell Harper and Joseph A. Konstan. 2015. The **MovieLens** Datasets: History and Context. ACM Transactions on Interactive Intelligent Systems (TiiS) 5, 4, Article 19 (December 2015), 19 pages. <u>http://dx.doi.org/10.1145/2827872</u>

Synthetic Memory Benchmark

Reoccurring purchase after a noisy session; memory capacity = t

- RNN: not sensitive to explicit context changes
- HGRU [Quadrana et al.]: 50<t<60
- Irregular computation flows 10x slower
- HRNN [ours]: 10<t<20 (Meet most use-cases)

Speed and Performance Trade-Offs

- Subreddit-interactions prediction (18271 users, 27453 subreddits)
- HRNN: GRU + time-delta (ours)
- HGRU: GRU + time-delta + hierarchy
- HRNN (ours) meets most use cases

+0.16

+0.05 10x slower

Hit@5 on reddit recommendation

	GRU	HRNN	HGRU	Рор	BPR ⁵
50 hidden	0.26	0.42	0.47	0.11	0.39

Speed and Performance Trade-Offs

- Subreddit-interactions prediction (18271 users, 27453 subreddits)
- HRNN: GRU + time-delta (ours)
- HGRU: GRU + time-delta + hierarchy
- HRNN (ours) meets most use cases

+0.16

+0.05 10x slower

Hit@5 on reddit recommendation

		GRU	HRNN	HGRU	Рор	BPR ⁵
+0.29	50 hidden 200 hidden	0.26 0.55	0.42 0.55	0.47 0.55	0.11	0.39

• Caveat:

- Largest benefit comes from model tuning
- Public datasets have limited complexity

Contributions

Recommend by Item Meta-Data

Factorization machines [Rendle 2011]: a game of point collection

Item	Rain	No rain	Wind	No wind	Scores
Umbrella (w ₁)	1	0	0	1	1
Jacket (w_2)	1	0	1	0	0
Nothing (w_3)	0	1	1	1	2
Context	0	1	0	1	

Meta score = [context meta-data] * [item meta-data] HRNN score = [user embedding] * [item embedding] A hybrid model adapts to both types of data sources!

Recommend New Movies in a Hold-Out Set

Remove a random half of unique movies from training

Action|Drama|War

Drama|Fantasy|Romance

Action|Adventure|Sci-Fi

Drama|Musical

Comedy

Horror Thriller

• Expect similar genres top rank top within the hold-out set

Making Contact (a.k.a. Joey) (1985)	Fantasy Horror Sci-Fi	
Decoys (2004)	Comedy Horror Sci-Fi	
Critters 4 (1991)	Comedy Horror Sci-Fi	
TerrorVision (1986)	Comedy Horror Sci-Fi	
Tremors II: Aftershocks (1996)	Comedy Horror Sci-Fi	
Evil Aliens (2005)	Comedy Horror Sci-Fi	
Thing with Two Heads, The (1972)	Comedy Horror Sci-Fi	

Genres in top-ranked hold-out movies

Genres in user history

• Limitations?

Road Warrior, The (Mad Max 2) (1981)

Halloween: The Curse of Michael Myers (Harve...

Braveheart (1995)

Farinelli: il castrato (1994)

Back to the Future (1985)

Grumpy Old Men (1993)

Edward Scissorhands (1990)

• When warm items present, underscore cold items due to low confidence

Contributions

Temporal Drifts in Item Popularity

- In news or media domains, new items easily drive >50% of traffic;
- Count global item popularity in Time Intervals (T)
 - T = 12 hours, 30 minutes, etc.
 - Test with previous T
 - Null = bootstrap from same T

• How to use the stale information?

Stale information after T = 12 hours

No significant drifts in T = 30 minutes

Item Trend Debiasing

We learn to attribute between: P(exposure | freshness, popularity) P(consumption | exposure, user preference)

Related to Inverse Propensity Scoring More theoretical insights in [Ma et al., 2019] Model inspired by [Wu et al., 2017]

Negative Sampling

Vanilla RNN softmax on every item sample from popular items + debiasing

140040
1087
1 183 451
7.8k
631
17.6k
119k
0.15
0.08

https://tianchi.aliyun.com/dataset/dataDetail?databd=649

Bring Everything Together

14 days of news articles; Online VS-KNN > Offline GRU

[Ludewig & Jannach, 2018] <u>https://github.com/mjugo/StreamingRec</u>

Reproduce on larger set of items

Sample 1% of users

Filter user_activities >= 10 Filter item_views >= 100

Retain 4M views from

377k users & 31k items

Item trend debiasing

Item freshness since release Total views in last hour

Improves validation & test with long histories & futures!

VS-KNN depends on good cold-start item recs in the first place

Retrained Ours-Everything seems to bridge the gaps.

Conclusion

- Fill the practicality gap of session-aware RNN models
- Use temporal, contextual, side information
- Address time-varying confounding variables
- More theoretical details in paper
- Adopted by Amazon Personalize

https://github.com/aws-samples/amazonpersonalize-samples/

