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Motivation
Region sensing (aggregate value)

O

Task: localize the sources

Challenge: change
altitude to balance
coverage and fidelity

Algorithm
Sample complexity
Real satellite images

Figure 1: Use aggregate measurements on contiguous regions to find a sparse signal.

Measurement Model
Discretize search space to n grid points (e.g., 1d search)

Signal vector where S = {] : Bj > O}

R"> = ={j: B;=u}

L-value k-sparse

Region choice

rectangular such that HXtHQ =1

region @

uniform weight

00000000000,
Sensing outcome at step ¢ is 1y — X;_ B*+e¢, where e ~ N (0, 1).

R"> X,=

Objective
JChoose X = {Xt}tT:1 to discover S (let S7 be the estimate).

dLoss is d(S, S7) = %|SA§T\, where A is the symmetric dif-
ference of two sets, SAST = (S\ S7) U (S \ S).

Proposed Algorithm: Region Sensing Index (RSI)

Require: n, £, 1

use uniform prior my(3) /1 (1)
fort=1,....17 do
pick x; = arg maxy,cx I(3; yt | X¢, m—1) /] (2)
observe 1y = X;_ 3+ &4
update m(3) o< m—1(8)p(yt | B x¢—1) /1 (3)

Ensure: ST — arg minSA U [d(s(/@)a S) | ,6 ™ WT]

(1) m(3) is a uniform distribution on (Z) possible k-sparse signal vectors.

(2) For any choice of x;, compute mutual information between 3 ~ 7;_; and
(yt ‘ /67Xt> ~ N(XQ—,H, 1)
(3) Bayes rule based on collected data so until the current step.

(4) In practice, storing (Z) models may be infeasible; we find each signal lo-
cation sequentially (RSI-A).

Theoretical Guarantees in 1D Search

Design Regl.on Algorithm  Bayes prior Min T. to get Sampl.e *
type sensing e-risk complexity
> I n—1
passive  yes (any) o T250—55) O(n)
Point sensing (H = %) T < n(1 )
no (any) o T>51—¢ Qp)f
active - n 8k
T < 205log(=) =~
cass[1] 2 risk 1< 20,5 log("d) O(% + k)*
yes (incl. ) +2k logy(7) X
TG < nQ I k2 ~
RSI (ours) T < 50Gs+5) O(% + k2)*

Jogy(2)log(L)

* Sample complexity assumes € = 0.5, k < n. " Shown for unconstrained sensingl; binary
search requires §)(log,(n) + k) additional measurements. * log(n) terms are left out. T is
defined differently, as the average sample size when the posterior risk can be bounded by € 1n
each case (instead of a fixed value regardless of outcomes).
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Simulation Studies

Search space 1s 1d; discretized to n = 1024 points. 1.0

Signal 1s 1-sparse, with strength © = 16. S0s
|

v' RSI: most efficient choice of measurements. g °

x CASS [1]: less efficient in general. §0.4

not anytime; produces only turning points.*  §,,

x CS [2]: unconstrained; still less efficient.

x Point: best passive constrained sensing. R R
number of measurements, ¢
Figure 2: Search progress
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*To fully represent CASS, we show different choices of
I" given a priori (including the true value).
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Figure 3: Number of measurements to achieve Bayes error of 0.5 or less. Fix n = 1024.

v" RSI usually* uses the least number of measurements of order 1" = ON(%)

X CASS requires choosing /" appropriately to achieve the comparable (albeit

worse) performance; requires d = 1.
x Point passive region sensing has worse rates, ' = O(n).
X CS passive unconstrained sensing can also get near-optimal T = ON(%) [3].
*The only exception in d = 5 seems due to a restriction that regions have to choose from a
hierarchical sequence of increasingly finer grid boxes with dyadic side lengths.

Real-World Datasets
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Figure 4: Active search for blue colors on real satellite images. Left, an example image and
the signals to search for (circled). Right, search progress as more measurements are taken.

 Simulate search and rescue in open areas based on life jacket colors.
1 Used a blue filter on the RGB values, yielding the heatmap in Figure 1.
1 Performance RSI (ours) > CASS > CS = Point

Discussion and Related Work

Method / Paper Regi.on S‘parse Active Anytime Ro!).ust t?
sensing signals method search non-iid noise

Bayesian optimization [4] X X v ve v

Compressive sensing [2]  x* v E* X X X

CASS [1] v v v X1 x 1

RSI (ours) v ve ve v v

* Compressive sensing requires unconstrained sensing that does not incorporate region con-
straints.

** “No active method (e.g. [1]) can fundamentally improve sample efficiency beyond loga-
rithmic factors” — [3]. This 1s only true in the case of unconstrained sensing.

" CASS is a branch-and-bound algorithm that produces results only near the end.

F CASS requires repetitive measurements on the same region to control branching error, which
1s not practical in static environments.
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