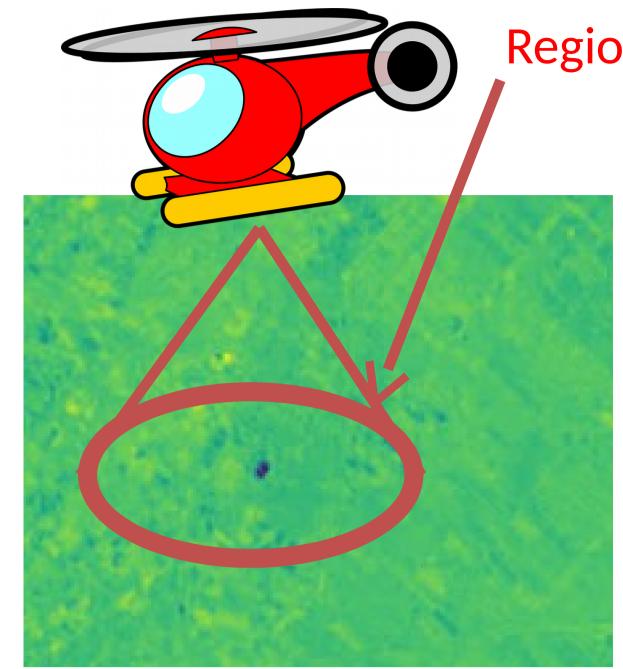
# **Active Search for Sparse Signals with Region Sensing**

# Yifei Ma\* and Roman Garnett\*\* and Jeff Schneider\*

\*Carnegie Mellon University \*\*Washington University in St. Louis yifeim@cs.cmu.edu



### Motivation



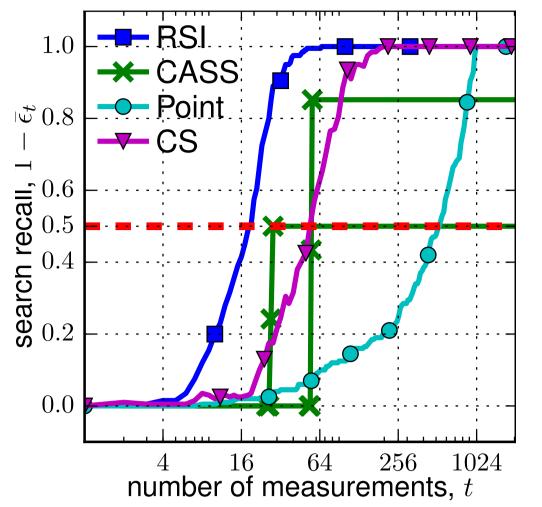
Region sensing (aggregate value) Task: localize the sources

- Challenge: change altitude to balance coverage and fidelity
- AlgorithmSample complexity

# **Simulation Studies**

Search space is 1d; discretized to n = 1024 points. Signal is 1-sparse, with strength  $\mu = 16$ .

- ✓ RSI: most efficient choice of measurements.
   × CASS [1]: less efficient in general. not anytime; produces only turning points.\*
   × CS [2]: unconstrained; still less efficient.
   × Point: best passive constrained sensing.



### Real satellite images

Figure 1: Use aggregate measurements on contiguous regions to find a sparse signal. Measurement Model

Discretize search space to *n* grid points (e.g., 1d search) Signal vector  $\mathbf{R}^{n} \ni \boldsymbol{\beta} = \mu^{-value}$ Region choice  $\mathbf{R}^{n} \ni \mathbf{x}_{t} = uniform weight$ rectangular rectangular region
such that  $\|\mathbf{x}_{t}\|_{2} = 1$ Sensing outcome at step *t* is  $y_{t} = \mathbf{x}_{t}^{\top} \boldsymbol{\beta}^{*} + \varepsilon_{t}$ , where  $\varepsilon_{t} \sim \mathcal{N}(0, 1)$ .

### Objective

□ Choose  $\mathbf{X} = \{\mathbf{x}_t\}_{t=1}^T$  to discover S (let  $\hat{S}_T$  be the estimate). □ Loss is  $d(S, \hat{S}_T) = \frac{1}{k} |S \triangle \hat{S}_T|$ , where  $\triangle$  is the symmetric difference of two sets,  $S \triangle \hat{S}_T = (S \setminus \hat{S}_T) \cup (\hat{S}_T \setminus S)$ . \*To fully represent CASS, we show different choices of T given *a priori* (including the true value).

#### Figure 2: Search progress

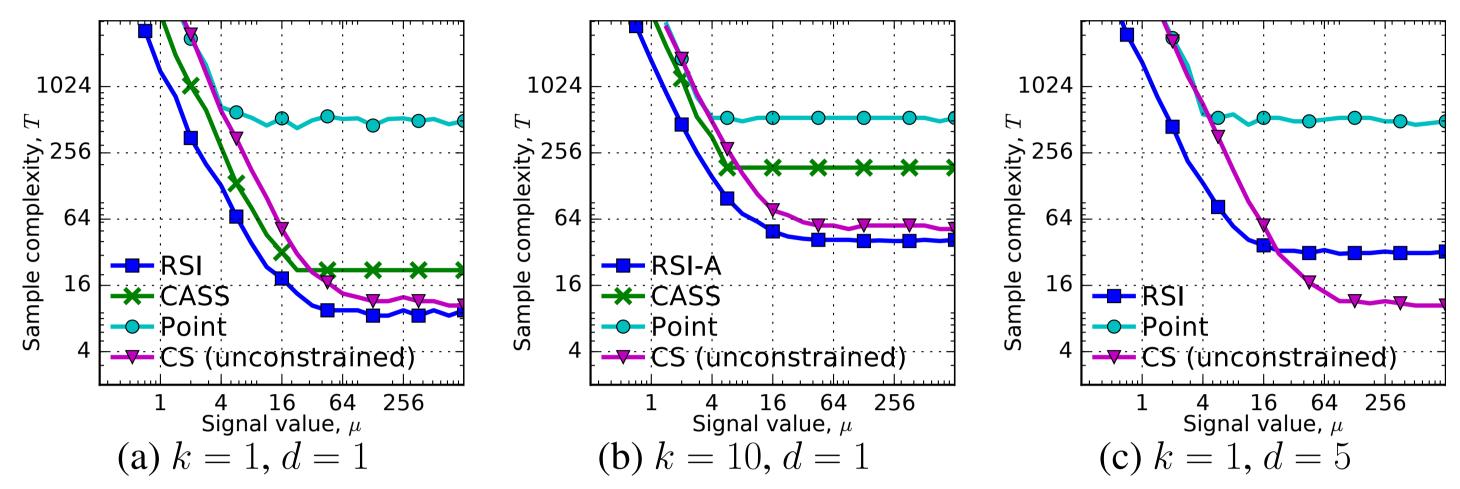


Figure 3: Number of measurements to achieve Bayes error of 0.5 or less. Fix n = 1024.

✓ RSI usually\* uses the least number of measurements of order T = Õ(<sup>n</sup>/<sub>µ<sup>2</sup></sub>).
 × CASS requires choosing T appropriately to achieve the comparable (albeit worse) performance; requires d = 1.

× Point passive region sensing has worse rates, T = O(n). × CS passive *unconstrained* sensing can also get near-optimal  $T = \tilde{O}(\frac{n}{\mu^2})$  [3]. \*The only exception in d = 5 seems due to a restriction that regions have to choose from a hierarchical sequence of increasingly finer grid boxes with dyadic side lengths.

# **Proposed Algorithm: Region Sensing Index (RSI)**

| <b>Require:</b> $n, k, \mu$                                                                                                      |        |
|----------------------------------------------------------------------------------------------------------------------------------|--------|
| use uniform prior $\pi_0(\boldsymbol{\beta})$                                                                                    | // (1) |
| for $t = 1,, T$ do                                                                                                               |        |
| pick $\mathbf{x}_t = \arg \max_{\mathbf{x}_t \in \mathcal{X}} I(\boldsymbol{\beta}; y_t \mid \mathbf{x}_t, \pi_{t-1})$           | // (2) |
| observe $y_t = \mathbf{x}_t^\top \boldsymbol{\beta} + \varepsilon_t$                                                             |        |
| update $\pi_t(\boldsymbol{\beta}) \propto \pi_{t-1}(\boldsymbol{\beta}) p(y_t \mid \boldsymbol{\beta}, \mathbf{x}_{t-1})$        | // (3) |
| <b>Ensure:</b> $\hat{S}_T = \arg\min_{\hat{S}} \mathbb{E}[d(S(\boldsymbol{\beta}), \hat{S}) \mid \boldsymbol{\beta} \sim \pi_T]$ |        |

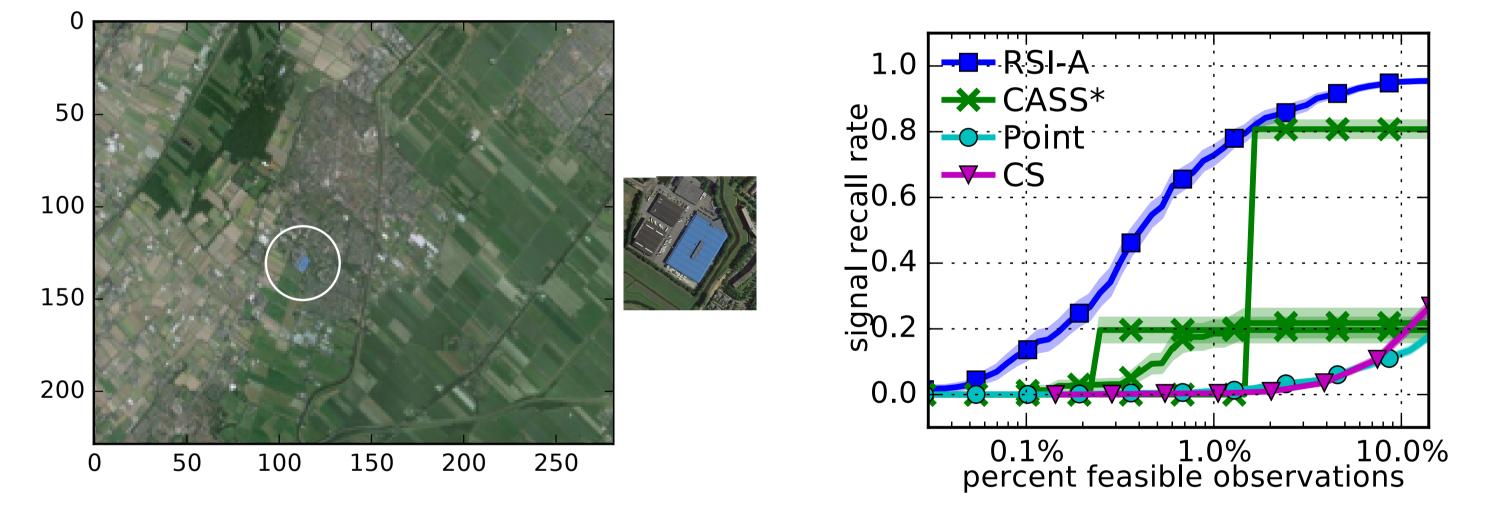
(1)  $\pi_0(\beta)$  is a uniform distribution on  $\binom{n}{k}$  possible k-sparse signal vectors.

(2) For any choice of  $\mathbf{x}_t$ , compute mutual information between  $\boldsymbol{\beta} \sim \pi_{t-1}$  and  $(y_t \mid \boldsymbol{\beta}, \mathbf{x}_t) \sim \mathcal{N}(\mathbf{x}_t^{\top} \boldsymbol{\beta}, 1).$ 

(3) Bayes rule based on collected data so until the current step.

(4) In practice, storing  $\binom{n}{k}$  models may be infeasible; we find each signal location sequentially (RSI-A).

### **Real-World Datasets**



**Figure 4:** Active search for blue colors on real satellite images. Left, an example image and the signals to search for (circled). Right, search progress as more measurements are taken.

❑ Simulate search and rescue in open areas based on life jacket colors.
 ❑ Used a blue filter on the RGB values, yielding the heatmap in Figure 1.
 ❑ Performance RSI (ours) > CASS ≫ CS ≈ Point

### **Discussion and Related Work**

Method / PaperRegion Sparse Active Anytime Robust to<br/>sensing signals method search non-iid noise

## **Theoretical Guarantees in 1D Search**

|            | Region sensing | Algorithm     | Bayes prior               | $\begin{array}{l} \text{Min } T \text{ to get} \\ \epsilon \text{-risk} \end{array}$                                                                     | Sample<br>complexity*                     |  |
|------------|----------------|---------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|
| passive ye | ves            | (any)         | $\pi_0$                   | $T \ge \frac{n}{2} \left(1 - \frac{n-1}{n-k}\epsilon\right)$                                                                                             | $\Theta(n)$                               |  |
|            | yes            | Point sensing | $(\mu 	o \infty)$         | $\frac{1}{T \le n(1 - \frac{n-1}{n-k}\epsilon)}$                                                                                                         |                                           |  |
| active     | no             | (any)         | $	ilde{\pi}_0$            | $T \ge \frac{4n}{\mu^2}(1-\epsilon)^2$                                                                                                                   | $\Omega(rac{n}{\mu^2})^\dagger$          |  |
|            | yes            | CASS [1]      | max risk (incl. $\pi_0$ ) | +2701082(k)                                                                                                                                              | $	ilde{O}(rac{n}{\mu^2}+k)^{\ddagger}$   |  |
|            |                | RSI (ours)    | $\pi_0$                   | $\bar{T}_{\epsilon} \le 50\left(\frac{n}{\mu^2} + \frac{k^2}{9}\right)$ $\cdot \log_2\left(\frac{2}{\epsilon}\right)\log\left(\frac{n}{\epsilon}\right)$ | $	ilde{O}(rac{n}{\mu^2}+k^2)^{\ddagger}$ |  |

\* Sample complexity assumes  $\epsilon = 0.5$ ,  $k \ll n$ . <sup>†</sup> Shown for unconstrained sensingl; binary search requires  $\Omega(\log_2(n) + k)$  additional measurements. <sup>‡</sup>  $\log(n)$  terms are left out.  $\overline{T}$  is defined differently, as the average sample size when the posterior risk can be bounded by  $\epsilon$  in each case (instead of a fixed value regardless of outcomes).

| Bayesian optimization [4] | ×            | ×            | $\checkmark$ | $\checkmark$       | $\checkmark$        |  |
|---------------------------|--------------|--------------|--------------|--------------------|---------------------|--|
| Compressive sensing [2]   | $\times^*$   | <b>√</b> **  | ×            | ×                  | X                   |  |
| CASS [1]                  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\times^{\dagger}$ | $\times^{\ddagger}$ |  |
| RSI (ours)                | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$       | $\checkmark$        |  |

\* Compressive sensing requires unconstrained sensing that does not incorporate region constraints.

\*\* "No active method (e.g. [1]) can *fundamentally* improve sample efficiency beyond logarithmic factors" — [3]. This is only true in the case of unconstrained sensing.
<sup>†</sup> CASS is a branch-and-bound algorithm that produces results only near the end.
<sup>‡</sup> CASS requires repetitive measurements on the same region to control branching error, which is not practical in static environments.

### References

- [1] Matthew L Malloy and Robert D Nowak. Near-optimal adaptive compressed sensing. *Information Theory, IEEE Transactions on*, 60(7):4001–4012, 2014.
- [2] Bradley Efron, Trevor Hastie, Iain Johnstone, Robert Tibshirani, et al. Least angle regression. *The Annals of statistics*, 32(2):407–499, 2004.
- [3] Ery Arias-Castro, Emmanuel J Candes, Mark Davenport, et al. On the fundamental limits of adaptive sensing. *Information Theory, IEEE Transactions on*, 59(1):472–481, 2013.
- [4] José Miguel Hernández-Lobato, Matthew W Hoffman, and Zoubin Ghahramani. Predictive entropy search for efficient global optimization of black-box functions. In *Advances in Neural Information Processing Systems*, 2014.