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Motivation
Region sensing (aggregate value)

Task: localize the sources

Challenge: change 
altitude to balance 
coverage and fidelity

  Algorithm
  Sample complexity
  Real satellite images

Figure 1: Use aggregate measurements on contiguous regions to find a sparse signal.

Measurement Model
Discretize search space to n grid points (e.g., 1d search)

k-sparseµ-value
Rn ϶ β=

Signal vector where S = {j : βj > 0}
= {j : βj = µ}

Rn ϶ xt= rectangular
region

uniform weight

Region choice
such that ‖xt‖2 = 1

Sensing outcome at step t is yt = x>t β
∗+εt, where εt ∼ N (0, 1).

Objective
qChoose X = {xt}Tt=1 to discover S (let ŜT be the estimate).

qLoss is d(S, ŜT ) = 1
k|S4ŜT |, where 4 is the symmetric dif-

ference of two sets, S4ŜT = (S \ ŜT ) ∪ (ŜT \ S).

Proposed Algorithm: Region Sensing Index (RSI)

Require: n, k, µ
use uniform prior π0(β) // (1)
for t = 1, . . . , T do

pick xt = arg maxxt∈X I(β; yt | xt, πt−1) // (2)
observe yt = x>t β + εt
update πt(β) ∝ πt−1(β)p(yt | β,xt−1) // (3)

Ensure: ŜT = arg min
Ŝ
E
[
d(S(β), Ŝ) | β ∼ πT

]
(1)π0(β) is a uniform distribution on

(
n
k

)
possible k-sparse signal vectors.

(2) For any choice of xt, compute mutual information between β ∼ πt−1 and
(yt | β,xt) ∼ N

(
x>t β, 1

)
.

(3) Bayes rule based on collected data so until the current step.

(4) In practice, storing
(
n
k

)
models may be infeasible; we find each signal lo-

cation sequentially (RSI-A).

Theoretical Guarantees in 1D Search
Design

type
Region
sensing

Algorithm Bayes prior
Min T to get

ε-risk
Sample

complexity∗

passive yes
(any) π0

(µ→∞)
T ≥ n

2(1− n−1
n−kε) Θ(n)

Point sensing T ≤ n(1− n−1
n−kε)

active
no (any) π̃0 T ≥ 4n

µ2(1− ε)2 Ω( nµ2)
†

yes
CASS [1]

max risk
(incl. π0)

T ≤ 20 nµ2 log(8k
ε )

+2k log2(
n
k)

Õ( nµ2 + k)‡

RSI (ours) π0
T̄ε ≤ 50( nµ2 + k2

9 )

· log2(
2
ε) log(nε)

Õ( nµ2 + k2)‡

∗ Sample complexity assumes ε = 0.5, k � n. † Shown for unconstrained sensingl; binary
search requires Ω(log2(n) + k) additional measurements. ‡ log(n) terms are left out. T̄ is
defined differently, as the average sample size when the posterior risk can be bounded by ε in
each case (instead of a fixed value regardless of outcomes).

Simulation Studies
Search space is 1d; discretized to n = 1024 points.
Signal is 1-sparse, with strength µ = 16.

XRSI: most efficient choice of measurements.
×CASS [1]: less efficient in general.

not anytime; produces only turning points.*
×CS [2]: unconstrained; still less efficient.
×Point: best passive constrained sensing.

*To fully represent CASS, we show different choices of
T given a priori (including the true value).
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Figure 2: Search progress
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(a) k = 1, d = 1
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(b) k = 10, d = 1
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(c) k = 1, d = 5

Figure 3: Number of measurements to achieve Bayes error of 0.5 or less. Fix n = 1024.

XRSI usually* uses the least number of measurements of order T = Õ( nµ2).
×CASS requires choosing T appropriately to achieve the comparable (albeit

worse) performance; requires d = 1.
×Point passive region sensing has worse rates, T = O(n).
×CS passive unconstrained sensing can also get near-optimal T = Õ( nµ2) [3].
*The only exception in d = 5 seems due to a restriction that regions have to choose from a
hierarchical sequence of increasingly finer grid boxes with dyadic side lengths.

Real-World Datasets
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Figure 4: Active search for blue colors on real satellite images. Left, an example image and
the signals to search for (circled). Right, search progress as more measurements are taken.

q Simulate search and rescue in open areas based on life jacket colors.
q Used a blue filter on the RGB values, yielding the heatmap in Figure 1.
q Performance RSI (ours) > CASS� CS ≈ Point

Discussion and Related Work

Method / Paper Region
sensing

Sparse
signals

Active
method

Anytime
search

Robust to
non-iid noise

Bayesian optimization [4] × × X X X
Compressive sensing [2] ×* X** × × ×
CASS [1] X X X ×† ×‡
RSI (ours) X X X X X

* Compressive sensing requires unconstrained sensing that does not incorporate region con-
straints.
** “No active method (e.g. [1]) can fundamentally improve sample efficiency beyond loga-
rithmic factors” — [3]. This is only true in the case of unconstrained sensing.
† CASS is a branch-and-bound algorithm that produces results only near the end.
‡ CASS requires repetitive measurements on the same region to control branching error, which
is not practical in static environments.
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