Active Search for Sparse Signals with Region Sensing

Yifei Ma* and Roman Garnett** and Jeff Schneider*

*Carnegie Mellon University **Washington University in St. Louis yifeim@cs.cmu.edu

Motivation

Region sensing (aggregate value) Task: localize the sources

- Challenge: change altitude to balance coverage and fidelity
- AlgorithmSample complexity

Simulation Studies

Search space is 1d; discretized to n = 1024 points. Signal is 1-sparse, with strength $\mu = 16$.

- ✓ RSI: most efficient choice of measurements.
 × CASS [1]: less efficient in general. not anytime; produces only turning points.*
 × CS [2]: unconstrained; still less efficient.
 × Point: best passive constrained sensing.

Real satellite images

Figure 1: Use aggregate measurements on contiguous regions to find a sparse signal. Measurement Model

Discretize search space to *n* grid points (e.g., 1d search) Signal vector $\mathbf{R}^{n} \ni \boldsymbol{\beta} = \mu^{-value}$ Region choice $\mathbf{R}^{n} \ni \mathbf{x}_{t} = uniform weight$ rectangular rectangular region
such that $\|\mathbf{x}_{t}\|_{2} = 1$ Sensing outcome at step *t* is $y_{t} = \mathbf{x}_{t}^{\top} \boldsymbol{\beta}^{*} + \varepsilon_{t}$, where $\varepsilon_{t} \sim \mathcal{N}(0, 1)$.

Objective

□ Choose $\mathbf{X} = \{\mathbf{x}_t\}_{t=1}^T$ to discover S (let \hat{S}_T be the estimate). □ Loss is $d(S, \hat{S}_T) = \frac{1}{k} |S \triangle \hat{S}_T|$, where \triangle is the symmetric difference of two sets, $S \triangle \hat{S}_T = (S \setminus \hat{S}_T) \cup (\hat{S}_T \setminus S)$. *To fully represent CASS, we show different choices of T given *a priori* (including the true value).

Figure 2: Search progress

Figure 3: Number of measurements to achieve Bayes error of 0.5 or less. Fix n = 1024.

✓ RSI usually* uses the least number of measurements of order T = Õ(ⁿ/_{µ²}).
 × CASS requires choosing T appropriately to achieve the comparable (albeit worse) performance; requires d = 1.

× Point passive region sensing has worse rates, T = O(n). × CS passive *unconstrained* sensing can also get near-optimal $T = \tilde{O}(\frac{n}{\mu^2})$ [3]. *The only exception in d = 5 seems due to a restriction that regions have to choose from a hierarchical sequence of increasingly finer grid boxes with dyadic side lengths.

Proposed Algorithm: Region Sensing Index (RSI)

Require: n, k, μ	
use uniform prior $\pi_0(\boldsymbol{\beta})$	// (1)
for $t = 1,, T$ do	
pick $\mathbf{x}_t = \arg \max_{\mathbf{x}_t \in \mathcal{X}} I(\boldsymbol{\beta}; y_t \mid \mathbf{x}_t, \pi_{t-1})$	// (2)
observe $y_t = \mathbf{x}_t^\top \boldsymbol{\beta} + \varepsilon_t$	
update $\pi_t(\boldsymbol{\beta}) \propto \pi_{t-1}(\boldsymbol{\beta}) p(y_t \mid \boldsymbol{\beta}, \mathbf{x}_{t-1})$	// (3)
Ensure: $\hat{S}_T = \arg\min_{\hat{S}} \mathbb{E}[d(S(\boldsymbol{\beta}), \hat{S}) \mid \boldsymbol{\beta} \sim \pi_T]$	

(1) $\pi_0(\beta)$ is a uniform distribution on $\binom{n}{k}$ possible k-sparse signal vectors.

(2) For any choice of \mathbf{x}_t , compute mutual information between $\boldsymbol{\beta} \sim \pi_{t-1}$ and $(y_t \mid \boldsymbol{\beta}, \mathbf{x}_t) \sim \mathcal{N}(\mathbf{x}_t^{\top} \boldsymbol{\beta}, 1).$

(3) Bayes rule based on collected data so until the current step.

(4) In practice, storing $\binom{n}{k}$ models may be infeasible; we find each signal location sequentially (RSI-A).

Real-World Datasets

Figure 4: Active search for blue colors on real satellite images. Left, an example image and the signals to search for (circled). Right, search progress as more measurements are taken.

❑ Simulate search and rescue in open areas based on life jacket colors.
 ❑ Used a blue filter on the RGB values, yielding the heatmap in Figure 1.
 ❑ Performance RSI (ours) > CASS ≫ CS ≈ Point

Discussion and Related Work

Method / PaperRegion Sparse Active Anytime Robust to
sensing signals method search non-iid noise

Theoretical Guarantees in 1D Search

	Region sensing	Algorithm	Bayes prior	$\begin{array}{l} \text{Min } T \text{ to get} \\ \epsilon \text{-risk} \end{array}$	Sample complexity*	
passive ye	ves	(any)	π_0	$T \ge \frac{n}{2} \left(1 - \frac{n-1}{n-k}\epsilon\right)$	$\Theta(n)$	
	yes	Point sensing	$(\mu o \infty)$	$\frac{1}{T \le n(1 - \frac{n-1}{n-k}\epsilon)}$		
active	no	(any)	$ ilde{\pi}_0$	$T \ge \frac{4n}{\mu^2}(1-\epsilon)^2$	$\Omega(rac{n}{\mu^2})^\dagger$	
	yes	CASS [1]	max risk (incl. π_0)	+2701082(k)	$ ilde{O}(rac{n}{\mu^2}+k)^{\ddagger}$	
		RSI (ours)	π_0	$\bar{T}_{\epsilon} \le 50\left(\frac{n}{\mu^2} + \frac{k^2}{9}\right)$ $\cdot \log_2\left(\frac{2}{\epsilon}\right)\log\left(\frac{n}{\epsilon}\right)$	$ ilde{O}(rac{n}{\mu^2}+k^2)^{\ddagger}$	

* Sample complexity assumes $\epsilon = 0.5$, $k \ll n$. [†] Shown for unconstrained sensingl; binary search requires $\Omega(\log_2(n) + k)$ additional measurements. [‡] $\log(n)$ terms are left out. \overline{T} is defined differently, as the average sample size when the posterior risk can be bounded by ϵ in each case (instead of a fixed value regardless of outcomes).

Bayesian optimization [4]	×	×	\checkmark	\checkmark	\checkmark	
Compressive sensing [2]	\times^*	√ **	×	×	X	
CASS [1]	\checkmark	\checkmark	\checkmark	\times^{\dagger}	\times^{\ddagger}	
RSI (ours)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	

* Compressive sensing requires unconstrained sensing that does not incorporate region constraints.

** "No active method (e.g. [1]) can *fundamentally* improve sample efficiency beyond logarithmic factors" — [3]. This is only true in the case of unconstrained sensing.
[†] CASS is a branch-and-bound algorithm that produces results only near the end.
[‡] CASS requires repetitive measurements on the same region to control branching error, which is not practical in static environments.

References

- [1] Matthew L Malloy and Robert D Nowak. Near-optimal adaptive compressed sensing. *Information Theory, IEEE Transactions on*, 60(7):4001–4012, 2014.
- [2] Bradley Efron, Trevor Hastie, Iain Johnstone, Robert Tibshirani, et al. Least angle regression. *The Annals of statistics*, 32(2):407–499, 2004.
- [3] Ery Arias-Castro, Emmanuel J Candes, Mark Davenport, et al. On the fundamental limits of adaptive sensing. *Information Theory, IEEE Transactions on*, 59(1):472–481, 2013.
- [4] José Miguel Hernández-Lobato, Matthew W Hoffman, and Zoubin Ghahramani. Predictive entropy search for efficient global optimization of black-box functions. In *Advances in Neural Information Processing Systems*, 2014.