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Motivation

Traditional BO designs queries using the full Bayesian distribution.
Thompson sampling can be as efficient when only using a sample point [1].
However, besides conceptual simplicity, are there computational benefits by
using sampling?

Background of Thompson Sampling

To maximize f(x) = f(x;0), s.t. x € X, where @ is unknown,
assume prior for p(@) and iterate:
sample 0 o< p(6) | X,y V7 < 1

query X1 = arg maxycy f(x; 6)
obtain y;1 = f(xt41) + €111, €141 ~ N(0, 07)
Criterion: choose queries according to the probability that they are optimal.

Problem Formulation
Quickly sample from a standard form of Bayesian posterior distribution
6~ N(0,A™), (1)

where A € R"*" 1s a positive-definite (PD) matrix.
Avoid performing the Cholesky decomposition of A.

Table 1: Examples of Bayesian Posterior Distribution

Bayesian Linear Regression Gaussian processes (GP)
(BLR) w/ fixed pool of choices!

constraint ~ Vx € R" s.t.||x]|s <1 X =A{x},...,x'}

parameter Vo € R" 0 = (f(XT)y R f(X;;))T
model yr =X 0 +¢; yr = 05 + e for x; = x
post. A S+ > S xx! K.+ S s.st

*Assume > "and K_! can be easily computed and stored.
s is the position of x; 1n the list of feasible queries; s, € R" 1s the indicator vector of s .

Proposed Method
Algorithm 1: Conjugate Sampling

Require: PD matrix A, integer k.« < n (k. = n for exact sampling)
Ensure: One sample point 77 ~ N (0, A~!) or its approximation if k¥ < n
let x) = 1, = po = 0, ap = 0, choose random ry = ¢ ~ N (0, I)
fork=1,... k. do
compute residual (1.e., negative gradient) rp, = r;_| — osz_(lApk_)l
r, (rp—"_p_1

find conjugate direction p; = r; + Bipr_1, Where 8, = =<

Iy 1 Trk—1

rgrk

A

perform line search x;, = X;_1 + aipk, Where oy, =

cumulate random variables 17, = 1. +&,pr, where &, o N, ||lpellx5)
if c =~ Ax; then
break
output 7 = \/% n.., (also generates x; ~ A~ 'c for the chosen c)

Properties

Theorem 1 ([2]). The conjugate directions, denoted in matrix form by
P = (pi,...,pr) are A-orthogonal, such that P'AP = D, where D =

diag(||p1la, - - -, [[Pkl|a) is positive-definite.
Exact sampling if A has distinct eigenvalues and Alg 1 runs to £ = n, be-
cause

n = P&, where € ~ N (0,D 1)

The covariance is PD7'P' = A~!

Approximate sampling if stopped early
Scale the result to generate the same amount of variance
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Computational Benefits

Applies when A 1s sparse or structured, assuming
ta (< n?) is the time complexity of matrix-vector multiplications;
ma (< n?) is the space complexity to store A;
kA (= 4/n) is the condition number of A.

Table 2: Comparison of Complexity of Posterior Sampling

Method Time Space
Thompson sampling (naive) O(n?), fixed O(n?), dense
Thompson sampling (online) O(n?), fixed O(n*), dense

Conjugate sampling O(y/kata) O(n+ma)
E.g., Kronecker-GP in D dimensions [3] O(Dng% +n2) O(n + Dn%)

Simulations
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BLR, maximizes x' 0 s.t. ||x]||» < 1.
Prior givenby © =1, o, = 1, n = 100.
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v’ Conjugate sampling with k... =
comparable with Thompson sampling.
v/ Cumulative regret is O(/1 logT).
v For k... = 1, conjugate sampling
scales any random exploration vector to
balance exploration and exploitation.
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Figure 1: BLR. Cumulative regret

GP, maximize f(x) s.t. x € {x},...,x’). Assume square exponential kernel
k(x,X') = Jicexp{—%ﬁﬂx — x/||3} with £ = 0.3, 0y = 1, 0, = 1. Feasible
queries are 5° Cartesian grid points in [0, 1]°. Use preconditioner derived from
prior (Kronecker product of 1d kernel matrices).

v (Preconditioned) conjugate sampling with k... = 1 comparable with
Thompson sampling; both converged as cumulative regret is O (/1 logT).

v Improved time and space complexity shown in Table 2.

X Increasing k., limit does not decrease regret; suffer numerical instability?
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Figure 2: GP. Left: cumulative regret. Right: total regret at 1 = 5000. T for
Thompson sampling and R for Random sampling

Future Work

e Theoretical properties of conjugate sampling, especially when k., 1s small?
e Better preconditioner to avoid numerical instabilities?
e Other applications where matrix-vector multiplications are fast?
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