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Motivation
Traditional BO designs queries using the full Bayesian distribution.
Thompson sampling can be as efficient when only using a sample point [1].
However, besides conceptual simplicity, are there computational benefits by
using sampling?

Background of Thompson Sampling
To maximize f (x) = f (x;θ), s.t. x ∈ X , where θ is unknown,

assume prior for p(θ) and iterate:
sample θ̃ ∝ p(θ | xτ , yτ ,∀τ ≤ t)

query xt+1 = argmaxx∈X f (x; θ̃)

obtain yt+1 = f (xt+1) + εt+1, εt+1 ∼ N (0, σ2n)

Criterion: choose queries according to the probability that they are optimal.

Problem Formulation
Quickly sample from a standard form of Bayesian posterior distribution

θ ∼ N (0,A−1), (1)

where A ∈ Rn×n is a positive-definite (PD) matrix.
Avoid performing the Cholesky decomposition of A.

Table 1: Examples of Bayesian Posterior Distribution

Bayesian Linear Regression
(BLR)

Gaussian processes (GP)
w/ fixed pool of choices†

constraint ∀x ∈ Rn, s.t.‖x‖2 ≤ 1 X = {x∗1, . . . ,x∗n}
parameter ∀θ ∈ Rn θ =

(
f (x∗1), . . . , f (x

∗
n)
)>

model yτ = x>τ θ + ετ yτ = θsτ + ετ for xτ = x∗sτ
post. A Σ−1p + 1

σ2n

∑t
τ=1 xτx

>
τ K−1∗∗ +

1
σ2n

∑t
τ=1 sτs

>
τ

*Assume Σ−1p and K−1∗∗ can be easily computed and stored.
†sτ is the position of xτ in the list of feasible queries; sτ ∈ Rn is the indicator vector of sτ .

Proposed Method
Algorithm 1: Conjugate Sampling

Require: PD matrix A, integer kmax ≤ n (kmax = n for exact sampling)
Ensure: One sample point η̃ ∼ N (0,A−1) or its approximation if k < n

let x0 = η0 = p0 = 0, α0 = 0, choose random r0 = c ∼ N (0, I)

for k = 1, . . . , kmax do
compute residual (i.e., negative gradient) rk = rk−1 − αk−1Apk−1
find conjugate direction pk = rk + βkpk−1, where βk =

r>k (rk−rk−1)

r>k−1rk−1

perform line search xk = xk−1 + αkpk, where αk =
r>k rk
‖pk‖2A

cumulate random variables ηk = ηk−1+ξkpk, where ξk
iid∼ N (0, ‖pk‖−2A )

if c ≈ Axk then
break

output η̃ =
√

n/k ηk, (also generates xk ≈ A−1c for the chosen c)

Properties
Theorem 1 ([2]). The conjugate directions, denoted in matrix form by
P = (p1, . . . ,pk) are A-orthogonal, such that P>AP = D, where D =

diag(‖p1‖2A, . . . , ‖pk‖2A) is positive-definite.
Exact sampling if A has distinct eigenvalues and Alg 1 runs to k = n, be-
cause

η̃ = Pξ, where ξ ∼ N (0,D−1)

The covariance is PD−1P> = A−1

Approximate sampling if stopped early
Scale the result to generate the same amount of variance

Computational Benefits
Applies when A is sparse or structured, assuming
tA(� n2) is the time complexity of matrix-vector multiplications;
mA(� n2) is the space complexity to store A;
κA(�

√
n) is the condition number of A.

Table 2: Comparison of Complexity of Posterior Sampling

Method Time Space

Thompson sampling (naive) O(n3), fixed O(n2), dense

Thompson sampling (online) O(n2), fixed O(n2), dense

Conjugate sampling O(
√
κAtA) O(n +mA)

E.g., Kronecker-GP in D dimensions [3] O(Dn
3
2+

1
D + n

3
2) O(n +Dn

2
D)

Simulations

BLR, maximizes x>θ s.t. ‖x‖2 ≤ 1.
Prior given by Θ = I, σn = 1, n = 100.

X Conjugate sampling with kmax = 1

comparable with Thompson sampling.
X Cumulative regret is O(

√
T log T ).

X For kmax = 1, conjugate sampling
scales any random exploration vector to
balance exploration and exploitation.
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Figure 1: BLR. Cumulative regret

GP, maximize f (x) s.t. x ∈ {x∗1, . . . ,x∗n). Assume square exponential kernel
κ(x,x′) = σ2f exp{− 1

2`2‖x − x′‖22} with ` = 0.3, σf = 1, σn = 1. Feasible
queries are 53 Cartesian grid points in [0, 1]3. Use preconditioner derived from
prior (Kronecker product of 1d kernel matrices).

X (Preconditioned) conjugate sampling with kmax = 1 comparable with
Thompson sampling; both converged as cumulative regret is O(

√
T log T ).

X Improved time and space complexity shown in Table 2.
× Increasing kmax limit does not decrease regret; suffer numerical instability?
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Figure 2: GP. Left: cumulative regret. Right: total regret at T = 5000. T for
Thompson sampling and R for Random sampling

Future Work
• Theoretical properties of conjugate sampling, especially when kmax is small?
• Better preconditioner to avoid numerical instabilities?
• Other applications where matrix-vector multiplications are fast?
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