Fast Bayesian Optimization via Conjugate Sampling

Yifei Ma* and Roman Garnett** and Jeff Schneider*

*Carnegie Mellon University **Washington University in St. Louis yifeim@cs.cmu.edu AutomCarnegie
Mellon
University in St. Louis
School of Engineering
& Applied Science

Motivation

Traditional BO designs queries using the full Bayesian distribution.Thompson sampling can be as efficient when only using a sample point [1].However, besides conceptual simplicity, are there computational benefits by using sampling?

Background of Thompson Sampling

To maximize $f(\mathbf{x}) = f(\mathbf{x}; \boldsymbol{\theta})$, s.t. $\mathbf{x} \in \mathcal{X}$, where $\boldsymbol{\theta}$ is unknown, assume prior for $p(\boldsymbol{\theta})$ and iterate: sample $\tilde{\boldsymbol{\theta}} \propto p(\boldsymbol{\theta} \mid \mathbf{x}_{\tau}, y_{\tau}, \forall \tau \leq t)$ query $\mathbf{x}_{t+1} = \arg \max_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}; \tilde{\boldsymbol{\theta}})$ obtain $y_{t+1} = f(\mathbf{x}_{t+1}) + \varepsilon_{t+1}, \ \varepsilon_{t+1} \sim \mathcal{N}(0, \sigma_n^2)$ Criterion: choose queries according to the probability that they are optimal.

Computational Benefits

Applies when A is sparse or structured, assuming $t_{\mathbf{A}}(\ll n^2)$ is the time complexity of matrix-vector multiplications; $m_{\mathbf{A}}(\ll n^2)$ is the space complexity to store A; $\kappa_{\mathbf{A}}(\asymp \sqrt{n})$ is the condition number of A.

Table 2: Comparison of Complexity of Posterior Sampling

Method	Time	Space
Thompson compling (noive)	$O(n^3)$ fixed	$O(n^2)$ donse

Problem Formulation

Quickly sample from a standard form of Bayesian posterior distribution

$$\boldsymbol{\theta} \sim \mathcal{N}(\mathbf{0}, \mathbf{A}^{-1}),$$
 (1)

where $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a positive-definite (PD) matrix. Avoid performing the Cholesky decomposition of \mathbf{A} .

Table 1: Examples of Bayesian Posterior Distribution

	Bayesian Linear Regression (BLR)	Gaussian processes (GP) w/ fixed pool of choices [†]
constraint	$\forall \mathbf{x} \in \mathbb{R}^n, \text{s.t.} \ \mathbf{x}\ _2 \le 1$	$\mathcal{X} = \{\mathbf{x}_1^*, \dots, \mathbf{x}_n^*\}$
parameter	$orall oldsymbol{ heta} \in \mathbb{R}^n$	$\boldsymbol{\theta} = \left(f(\mathbf{x}_1^*), \dots, f(\mathbf{x}_n^*)\right)^{\top}$
model	$y_{\tau} = \mathbf{x}_{\tau}^{\top} \boldsymbol{\theta} + \varepsilon_{\tau}$	$y_{\tau} = \boldsymbol{\theta}_{s_{\tau}} + \varepsilon_{\tau} \text{ for } \mathbf{x}_{\tau} = \mathbf{x}_{s_{\tau}}^{*}$
post. A	$\mathbf{\Sigma}_p^{-1} + rac{1}{\sigma_n^2} \sum_{ au=1}^t \mathbf{x}_{ au} \mathbf{x}_{ au}^{ op}$	$\mathbf{K}_{**}^{-1} + rac{1}{\sigma_n^2} \sum_{ au=1}^t \mathbf{s}_{ au} \mathbf{s}_{ au}^{ op}$

Thompson sampling (naive) $O(n^3)$, fixed $O(n^2)$, dense Thompson sampling (online) $O(n^2)$, fixed $O(n^2)$, dense Conjugate sampling $O(n^2)$, fixed $O(n^2)$, dense $O(n^2)$, dense $O(n^2)$, fixed $O(n^2)$, dense $O(n^2)$, fixed $O(n^2)$, dense $O(n^2)$, fixed $O(n^2)$, dense $O(n^2)$, dense

Simulations

BLR, maximizes $\mathbf{x}^{\top} \boldsymbol{\theta}$ s.t. $\|\mathbf{x}\|_2 \leq 1$. Prior given by $\boldsymbol{\Theta} = \mathbf{I}, \sigma_n = 1, n = 100$.

✓ Conjugate sampling with $k_{\text{max}} = 1$ comparable with Thompson sampling. ✓ Cumulative regret is $O(\sqrt{T \log T})$. ✓ For $k_{\text{max}} = 1$, conjugate sampling scales any random exploration vector to balance exploration and exploitation.

GP, maximize $f(\mathbf{x})$ s.t. $\mathbf{x} \in {\mathbf{x}_1^*, \dots, \mathbf{x}_n^*}$. Assume square exponential kernel $\kappa(\mathbf{x}, \mathbf{x}') = \sigma_f^2 \exp\{-\frac{1}{2\ell^2} ||\mathbf{x} - \mathbf{x}'||_2^2\}$ with $\ell = 0.3$, $\sigma_f = 1$, $\sigma_n = 1$. Feasible queries are 5³ Cartesian grid points in $[0, 1]^3$. Use preconditioner derived from

*Assume Σ_p^{-1} and \mathbf{K}_{**}^{-1} can be easily computed and stored. ${}^{\dagger}s_{\tau}$ is the position of \mathbf{x}_{τ} in the list of feasible queries; $\mathbf{s}_{\tau} \in \mathbb{R}^n$ is the indicator vector of s_{τ} .

Proposed Method

Algorithm 1: Conjugate Sampling

Require: PD matrix **A**, integer $k_{\max} \le n$ ($k_{\max} = n$ for exact sampling) **Ensure:** One sample point $\tilde{\eta} \sim \mathcal{N}(\mathbf{0}, \mathbf{A}^{-1})$ or its approximation if k < nlet $\mathbf{x}_0 = \boldsymbol{\eta}_0 = \mathbf{p}_0 = \mathbf{0}$, $\alpha_0 = 0$, choose random $\mathbf{r}_0 = \mathbf{c} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ **for** $k = 1, \dots, k_{\max}$ **do** compute residual (i.e., negative gradient) $\mathbf{r}_k = \mathbf{r}_{k-1} - \alpha_{k-1}\mathbf{A}\mathbf{p}_{k-1}$ find conjugate direction $\mathbf{p}_k = \mathbf{r}_k + \beta_k \mathbf{p}_{k-1}$, where $\beta_k = \frac{\mathbf{r}_k^T(\mathbf{r}_k - \mathbf{r}_{k-1})}{\mathbf{r}_{k-1}^T \mathbf{r}_{k-1}}$ perform line search $\mathbf{x}_k = \mathbf{x}_{k-1} + \alpha_k \mathbf{p}_k$, where $\alpha_k = \frac{\mathbf{r}_k^T \mathbf{r}_k}{\|\mathbf{p}_k\|_A^2}$ cumulate random variables $\boldsymbol{\eta}_k = \boldsymbol{\eta}_{k-1} + \xi_k \mathbf{p}_k$, where $\xi_k \stackrel{\text{id}}{\sim} \mathcal{N}(0, \|\mathbf{p}_k\|_A^{-2})$ **if** $\mathbf{c} \approx \mathbf{A}\mathbf{x}_k$ **then break**

output $\tilde{\eta} = \sqrt{n/k} \eta_k$, (also generates $\mathbf{x}_k \approx \mathbf{A}^{-1} \mathbf{c}$ for the chosen \mathbf{c})

Properties

Theorem 1 ([2]). The conjugate directions, denoted in matrix form by $\mathbf{P} = (\mathbf{p}_1, \dots, \mathbf{p}_k)$ are A-orthogonal, such that $\mathbf{P}^{\top} \mathbf{A} \mathbf{P} = \mathbf{D}$, where $\mathbf{D} = \mathbf{D}$

prior (Kronecker product of 1d kernel matrices).

✓ (Preconditioned) conjugate sampling with $k_{\text{max}} = 1$ comparable with Thompson sampling; both converged as cumulative regret is $O(\sqrt{T \log T})$. ✓ Improved time and space complexity shown in Table 2.

imes Increasing k_{\max} limit does not decrease regret; suffer numerical instability?

Figure 2: GP. Left: cumulative regret. Right: total regret at T = 5000. T for Thompson sampling and R for Random sampling

Future Work

• Theoretical properties of conjugate sampling, especially when k_{\max} is small?

 $\operatorname{diag}(\|\mathbf{p}_1\|_{\mathbf{A}}^2,\ldots,\|\mathbf{p}_k\|_{\mathbf{A}}^2)$ is positive-definite.

Exact sampling if A has distinct eigenvalues and Alg 1 runs to k = n, because

 $\tilde{\eta} = \mathbf{P}\boldsymbol{\xi}$, where $\boldsymbol{\xi} \sim \mathcal{N}(\mathbf{0}, \mathbf{D}^{-1})$ The covariance is $\mathbf{P}\mathbf{D}^{-1}\mathbf{P}^{\top} = \mathbf{A}^{-1}$

Approximate sampling if stopped early

Scale the result to generate the same amount of variance

• Better preconditioner to avoid numerical instabilities?

• Other applications where matrix-vector multiplications are fast?

References

- [1] Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling. In *Advances in neural information processing systems*, pages 2249–2257, 2011.
- [2] Yousef Saad. Iterative methods for sparse linear systems. Siam, 2003.
- [3] Seth Flaxman, Andrew Gordon Wilson, Daniel B Neill, Hannes Nickisch, and Alexander J Smola. Fast kronecker inference in gaussian processes with non-gaussian likelihoods. In *International Conference on Machine Learning*, volume 2015, 2015.