Active Search and Bandit Methods for Complex Actions and Rewards

Yifei Ma

References & collaborators

Jeff Schneider, Roman Garnett, Aarti Singh, Tzu-Kuo Huang.

Active Search

Given a set of instances and features, find all positive instances as quickly as possible, by querying label values from user/environment.

Roadmap

Active search	Point rewards	Region rewards
Point action	Σ-Optimality for Active Learning on Graphs [Ma et al. 2013] Active Search on Graphs Using Sigma-Optimality [Ma et al. 2014]	Active Area Search [Ma et al. 2014] Active Pointillistic Pattern Search [Ma and Sutherland et al. 2015]
Group action	Active Search for Sparse Rewards with Region Constraints (in progress)	Theory of everything ?

Active Search On Graphs Using Σ-Optimality

Which node to query next?

4

Assume: smooth function on given graph

(Gaussian Markov random fields)

Task: find all *O* nodes interactively

Approach:

Exploit & explore

Main contribution:

Better exploration (), favoring cluster centers) than literature (), favoring leaf nodes)

Yifei Ma, Roman Garnett, Jeff Schneider. Σ-Optimality for Active Learning on Gaussian Random Fields. NIPS 2013. Yifei Ma, Tzu-Kuo Huang, Jeff Schneider. Active Search and Bandits on Graphs Using Sigma-Optimality. UAI 2015.

Ideas of Σ-Optimality

Multi-armed bandits (select by upper bounds)

previous $\underset{i}{\arg \max} \mu_t(i) + \alpha_t \sigma_t(i)$ ours $\arg \max_i \mu_t(i) + \alpha_t \Sigma_t(i)$

Where

$$\begin{split} \mu_t(i) &= \text{posterior marginal mean} \\ \sigma_t(i) &= \text{posterior marginal std} \\ \Sigma_t(i) &= \sigma_t(i) + \sum_{j \neq i} \rho_t(i,j) \sigma_t(j) \end{split}$$
Motivation of "S"

Marginal std is large on leaf nodes

"Σ" promotes cluster centers

Reduces variance of global mean surveying

Near-optimality from submodularity

Yifei Ma, Roman Garnett, Jeff Schneider. Σ-Optimality for Active Learning on Gaussian Random Fields. NIPS 2013. Yifei Ma, Tzu-Kuo Huang, Jeff Schneider. Active Search and Bandits on Graphs Using Sigma-Optimality. UAI 2015.

5

Active Pointillistic Pattern Search

Point observations

On the upper level Pay to observe

Region rewards

On the lower level Region integral > threshold

Input

Smooth priors **Region definitions**

Thresholds / classifiers

Yifei Ma, Roman Garnett, Jeff Schneider. Active Area Search via Bayesian Quadrature. AISTATS 2014 Yifei Ma and Dougal J. Sutherland, Roman Garnett, Jeff Schneider. Active Pointillistic Pattern Search. AISTATS 2015

Our Method

Select to maximize 1-step look-ahead expected reward

$$x_t = \arg\max_{x_t} \int p_{t-1}(y_t | x_t) \cdot \sum_{g \in \mathcal{G}_t} \mathbf{1}(\operatorname{reward}_g | x_{1:t}, y_{1:t}) \, \mathrm{d}y_t$$

x,y point observations; $g\in\mathcal{G}$ regions for rewards

Unbiased **precision**: points in a region are chosen only to reduce variance

Yifei Ma, Roman Garnett, Jeff Schneider. Active Area Search via Bayesian Quadrature. AISTATS 2014 Yifei Ma and Dougal J. Sutherland, Roman Garnett, Jeff Schneider. Active Pointillistic Pattern Search. AISTATS 2015

Active Sensing with Region Sensing Constraints

Action: observe the mean value on any contiguous region with noise Objective: find all non-zero entries of a sparse vector. Intuition: coverage vs. signal decay

Main Contributions

Method: maximize the Information Gain of an observation

Sample complexity for 1-sparse signals:

$$ilde{O}\left(rac{n}{\mu^2}+rac{1}{\epsilon}
ight)$$

 μ : signal strength; $\Omega\left(\frac{n}{\mu^2}\right)$ required for active sensing; $\Omega(n)$ any passive sensing under the region-contiguity constraints.

Can extend to K-sparse signals and nonlinear signal decay functions

Thank you!

Active search	Point rewards	Region rewards
Point action	Σ-Optimality for Active Learning on Graphs [Ma et al. 2013] Active Search on Graphs Using Sigma-Optimality [Ma et al. 2014]	Active Area Search [Ma et al. 2014] Active Pointillistic Pattern Search [Ma and Sutherland et al. 2015]
Group action	Active Search for Sparse Rewards with Region Constraints (in progress)	Theory of everything ?

- More flexible group/region definitions
- Categorical/multi-label outcomes
- Ordinal regression
- Imitation/reinforcement learning
- Epoch parallel active search