
Active Search and Bandit Methods
for Complex Actions and Rewards

Yifei Ma

References & collaborators
Jeff Schneider, Roman Garnett, Aarti Singh, Tzu-Kuo Huang.

Given a set of instances and features, find all positive instances as
quickly as possible, by querying label values from user/environment.

Applications

Active Search

2	

?

?

?

? ?

?

?

?

?

?

?

?

?

X
X

X
⇥

Which node to query next?

Which instance to query next?	

Social polling	Pollution detection Search and rescue	 Email investigation	

Roadmap

Ac#ve	
search	

Point	rewards	 Region	rewards	

Point	
ac#on	

Σ-Op'mality	for	Ac've	Learning	
on	Graphs	[Ma	et	al.	2013]	
Ac've	Search	on	Graphs	Using	
Sigma-Op'mality	[Ma	et	al.	2014]	

Ac've	Area	Search	[Ma	et	al.	
2014]	
Ac've	Poin'llis'c	PaFern	Search	
[Ma	and	Sutherland	et	al.	2015]	

Group	
ac#on	

Ac've	Search	for	Sparse	Rewards	
with	Region	Constraints	(in	
progress)	

Theory	of	everything	?	

3	

Active Search On Graphs Using Σ-Optimality

Assume: smooth function on given graph

 (Gaussian Markov random fields)

Task: find all nodes interactively

Approach:

Exploit & explore

Main contribution:

Better exploration (, favoring cluster centers)

than literature (, favoring leaf nodes)

X

4	

?

?

?

? ?

?

?

?

?

?

?

?

?

X
X

X
⇥

Which node to query next?

Yifei	Ma,	Roman	GarneF,	Jeff	Schneider.	Σ-Op'mality	for	Ac've	Learning	on	Gaussian	Random	Fields.	NIPS	2013.	
Yifei	Ma,	Tzu-Kuo	Huang,	Jeff	Schneider.	Ac've	Search	and	Bandits	on	Graphs	Using	Sigma-Op'mality.	UAI	2015.	

Ideas of Σ-Optimality

5	

Active search:
Fraction of nodes queried

Multi-armed bandits (select by upper bounds)

 previous

 ours

Where

 posterior marginal mean

 posterior marginal std

Motivation of “Σ”

Marginal std is large on leaf nodes

“Σ” promotes cluster centers

Reduces variance of global mean surveying

Near-optimality from submodularity

argmax

i
µt(i) + ↵t�t(i)

argmax

i
µt(i) + ↵t⌃t(i)

µt(i) =

�t(i) =

⌃t(i) = �t(i) +
X

j 6=i
⇢t(i, j)�t(j)

Yifei	Ma,	Roman	GarneF,	Jeff	Schneider.	Σ-Op'mality	for	Ac've	Learning	on	Gaussian	Random	Fields.	NIPS	2013.	
Yifei	Ma,	Tzu-Kuo	Huang,	Jeff	Schneider.	Ac've	Search	and	Bandits	on	Graphs	Using	Sigma-Op'mality.	UAI	2015.	

Active Pointillistic Pattern Search

Point observations
On the upper level
Pay to observe

Region rewards

On the lower level
Region integral > threshold
(can replace by a classifier)

Input

Smooth priors
Region definitions
Thresholds / classifiers

6	

f(x1) f(x2) f(xn)

1

|X2|

Z

X2

f dx

· · ·

Yifei	Ma,	Roman	GarneF,	Jeff	Schneider.	Ac've	Area	Search	via	Bayesian	Quadrature.	AISTATS	2014	
Yifei	Ma	and	Dougal	J.	Sutherland,	Roman	GarneF,	Jeff	Schneider.	Ac've	Poin'llis'c	PaFern	Search.	AISTATS	2015	

Select to maximize 1-step look-ahead expected reward

 point observations; regions for rewards

Unbiased precision: points in a region are chosen only to reduce variance

Our	Method	
	

x

t

= argmax

xt

Z
p

t�1(yt|xt

) ·
X

g2Gt

1(reward
g

| x1:t, y1:t) dyt

x, y g 2 G

Electoral polling for district opinions	 Identifying fluid flow vortex patterns
 by observing point vectors	

7	
Yifei	Ma,	Roman	GarneF,	Jeff	Schneider.	Ac've	Area	Search	via	Bayesian	Quadrature.	AISTATS	2014	
Yifei	Ma	and	Dougal	J.	Sutherland,	Roman	GarneF,	Jeff	Schneider.	Ac've	Poin'llis'c	PaFern	Search.	AISTATS	2015	

Yifei Ma, Dougal J. Sutherland, Roman Garnett, Jeff Schneider

tives, Pennsylvania House of Representatives, and Penn-
sylvania State Senate races; the demographic/geographic
kernel was multiplied by a positive-definite covariance ma-
trix amongst the races. We learned the hyperparameters for
this kernel by maximizing the likelihood of the model on
full 2008 election data.

Given the kernel, we set up experiments to predict 2010
races based on surveying an individual voting precinct at a
time. For simplicity, we assume that a given voting precinct
can be thoroughly surveyed (and ignore turnout effects,
voters changing their minds over time, and so on); thus ob-
servations were made with the true vote share. We seeded
the experiment with a random 10 (out of 16 226) districts
observed; APPS selected from a random subset of 100 pro-
posals at each step. We again used ✓ = 0.7.

Figure 4: Recalls for election prediction. Color bands show
standard errors after 15 runs.

Figure 4 shows the mean and standard errors of 15 runs.
APPS outperforms both random and uncertainty sampling
here, though in this case the margin over random sampling
is much narrower. This is probably because the portion of
regions which are positive in this problem is much higher,
so more points are informative.

Uncertainty sampling is in fact worse than random here,
which is not too surprising because the purely explorative
nature of UNC is even worse on the high dimensional input
space of this problem.

LSE and AAS are not applicable to this problem, as they
have no notion of weighting points (by population).

4.3 Finding Vortices (Black-Box Classifier)

We now turn to more complex pattern classifiers by studying
the task of identifying vortices in a vector field based on
limited observations of flow vectors. Linear classifiers are
insufficient for this problem,4 so we will demonstrate the

4The set of vortices is not convex: consider the midpoint be-
tween a clockwise vortex and its identical counter-clockwise case.

flexibility of our approach with a black-box classifier.

To illustrate this setting, we consider the results of a large-
scale simulation of a turbulent fluid in three dimensions over
time in the Johns Hopkins Turbulence Databases5 [13]. Fol-
lowing Sutherland et al. [16], we aim to recognize vortices
in two-dimensional slices of the data at a single timestep,
based on the same small training set of 11 vortices and 20
non-vortices, partially shown in Figure 5(a).

Recall that h
g

assigns probability estimates to the entire
function class F confined to region g. Unlike the previous
examples, it is insufficient to consider only a weighted in-
tegral of f . Instead, though, we can consider the average
flow across sectors (angular slices from the center) of our
region as building blocks in detecting vortices. We count
how many sectors have clockwise/counter-clockwise flows
to give a classification result, in three steps:

1. First, we divide a region into K sectors. In each sector,
we take the integral of the inner product between the
actual flow vectors and a template. The template is
an “ideal” vortex, but with larger weights in the center
than the periphery. This produces a K-dimensional
summary statistic L

g

(f) for each region.

2. Next, we improve robustness against different flow
speeds in the data by scaling L

g

(f) to have maximum
entry 1, and flip its sign if its mean is negative. Call
the result ˜L

g

(f).

3. Finally, we feed the normalized ˜

L

g

(f) vector through
a 2-layer neural network of the form

h

g

(f) = �

wout

KX

i=1

�

⇣
win ˜Lg

(f)

i

+ bin

⌘
+ bout

!
,

where � is the logistic sigmoid function.

L

g

(f) | D obeys a K-dimensional multivariate normal dis-
tribution, from which we can sample many possible L

g

(f),
which we then normalize and pass through the neural net-
work as described above. This gives samples of probabilities
h

g

, whose mean is a Monte Carlo estimate of (2).

We used K = 4 sectors, and the weights in the template
were fixed such that the length scale matches the distance
from the center to an edge. The network was optimized for
classification accuracy on the training set. We then identified
a 50⇥ 50-pixel slice of the data that contains two vortices,
some other “interesting” regions, and some “boring” regions,
mostly overlapping with Figure 11 of Sutherland et al. [16];
the region, along with the output of the classifier when given
all of the input points, is shown in Figure 5(b). We then ran
APPS, initialized with 10 uniformly random points, for 200
steps. We defined the regions to be squares of size 11⇥ 11

and spaced them every 2 points along the grid, for 400 total
5
http://turbulence.pha.jhu.edu

678

Number of data points collected	R
ec

al
l f

or
 m

at
ch

in
g

re
gi

on
s	

Active Pointillistic Pattern Search

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b)

Figure 5: (a): Positive (top) and negative (bottom) training examples for the vortex classifier. (b): The velocity field used;
each arrow is the average of a 2⇥ 2 square of actual data points. Background color shows the probability obtained by each
region classifier on the 200 circled points; red circles mark points selected by one run of APPS initialized at the green circles.

regions. We again thresholded at ✓ = 0.7. We evaluate (2)
via a Monte Carlo approximation: first we took 4 samples
of z⇤, and then 15 samples from the posterior of f over the
window for each z⇤. Furthermore, at each step we evaluate
a random subset of 80 possible candidates x⇤.

Figure 6: Mean recalls over the search process on the vortex
experiment. Color bands show standard errors after 15 runs.

Figure 6 shows recall curves of active pattern search, un-
certainty sampling, and random selection, where for the
purpose of these curves we call the true label the output of
the classifier when all data is known, and the proposed label
is true if T

g

> ✓ at that point of the search (evaluated using
more Monte Carlo samples than in the search process, to
gain assurance in our evaluation but without increasing the
time required for the search). We can see that active pattern
search substantially outperforms uncertainty sampling and

random selection. As in Section 4.1, uncertainty sampling
was initially bad but later surpassed random selection, for
the same reason.

5 Conclusions

We have introduced the general active pointillistic pattern
search problem, where we seek to discover specific local
patterns exhibited by an underlying smooth function with a
limited observation budget. We proposed a framework built
on Bayesian decision theory for the sequential active selec-
tion of observations so as to maximize the expected number
of matching locations discovered at termination. We derived
analytical forms for the required quantities for a broad class
of models, and demonstrated the method’s efficacy across
three very different settings, using two different analytical
classifier forms and one based on sampling.

Acknowledgements

This work was funded in part by DARPA grant
FA87501220324 and by the German Science Foundation
(DFG) under reference GA 1615/1-1.

679

R
ec

al
l f

or
 m

at
ch

in
g

re
gi

on
s	

Number of data points collected	

Action: observe the mean value on any contiguous region with noise
Objective: find all non-zero entries of a sparse vector.
Intuition: coverage vs. signal decay

Ac#ve	Sensing	with	Region	Sensing	Constraints	

work	in	progress	 8	

(a)	True	point	values	 	(b)	search	sequence	

Method: maximize the Information Gain of an observation

Sample complexity for 1-sparse signals:

 : signal strength; required for active sensing;

 any passive sensing under the region-contiguity constraints.

Can extend to K-sparse signals and nonlinear signal decay functions

Main	Contribu#ons	

⌦(n)

work	in	progress	 9	

Õ

✓
n

µ2
+

1

✏

◆

µ ⌦

✓
n

µ2

◆

Thank you!

•  More	flexible	group/region	defini'ons	
•  Categorical/mul'-label	outcomes	
•  Ordinal	regression	
•  Imita'on/reinforcement	learning	
•  Epoch	parallel	ac've	search	

Ac#ve	
search	

Point	rewards	 Region	rewards	

Point	
ac#on	

Σ-Op'mality	for	Ac've	Learning	
on	Graphs	[Ma	et	al.	2013]	
Ac've	Search	on	Graphs	Using	
Sigma-Op'mality	[Ma	et	al.	2014]	

Ac've	Area	Search	[Ma	et	al.	
2014]	
Ac've	Poin'llis'c	PaFern	Search	
[Ma	and	Sutherland	et	al.	2015]	

Group	
ac#on	

Ac've	Search	for	Sparse	Rewards	
with	Region	Constraints	(in	
progress)	

Theory	of	everything	?	

