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Active Search  
Like Beer Tasting 

2 
Pictures in [Audibert and Munos 2011] 



Active Search 
Common Paradigm 
Assume: A pool of unlabeled data 
Goal: find all positive instances quickly 

Action: present instances and get labels 

3 Artwork by [Javad Azimi] 



Applications 
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Application Active Search Allows 

Product Recommendation New Users w/ Little Purchase History 

Information Retrieval Relevant but Underspecified Results 

Environmental Monitoring All Polluted Areas 

Opinion Polling All Winning/Swing States 

Hazard/Survivor Search Localize All Signal Hotspots 



Outline 
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App Challenge Previous 
state-of-the-art 

Contribution Papers 

Rec / 
Retrieval 
 

Similarity 
features 

Linear models Graphs NIPS 2013; 
UAI 2015 
 

Monitoring / 
Polling 

Reward 
defined by a 
group of points 

Point rewards Group rewards AISTATS 
2014; 2015 

Surveillance Sparse signal Point 
measurements 

Aggregate 
measurements 

AAAI 2017 
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Graphs can represent complex information 
-  High-dim sparse features, links, hierarchical structures. 

Nearest-neighbor graphs 
using raw image pixels 

Idea 1: Active Search on 
Graphs 



Problem Definition 
Assume: known graph; unknown labels 

Task: find all         nodes using the fewest label queries 

Question: which nodes to query? 

 

 

 

 

Task breakdown: 

Exploration (learning): reduce model uncertainty [NIPS 2013] 

Exploitation (search): find all positives [UAI 2015] 
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Good Exploration Similar 
to Experimental Designs 
Optimal Design [Gergonne, J. D. 1815] 

Design experiments to optimize some criterion (e.g. variance, entropy) 
Blind of actual observations 
 
Eg. regression 

 yi = xi
Tβ 

 design xi, observe yi, learn β? 
 
D-optimality 
V-optimality 
Σ-optimality – Our contribution #1 
 
Kernel regression/Gaussian process 

8 [By NOAA (http://www.photolib.noaa.gov/htmls/theb1982.htm) [Public domain], via Wikimedia Commons] 



yi

f1 f2

f3f4

Gaussian Random Fields 
[Zhu 2004] 
A Bayesian model for label propagation 
Prior 
 

 

f=(f1,…,fn)T : node values.  
L=D-A : graph Laplacian.   
 

Observe fs=ys, posterior is Gaussian with 

Mean values 

and covariance matrix 

L= 
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2
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Baseline 1: D-Optimality 
Minimize posterior differential entropy 
 
Greedy application maximizes marginal variance 

 

 
Near-optimal sensor placement [Krause 2008] 
GP-Bandit [Srinivas 2010] 
Level set estimation [Gotovos 2013] 
Bandits on graphs [Valko 2014] 

 

       Waste samples at boundaries 
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NEAR-OPTIMAL SENSOR PLACEMENTS IN GAUSSIAN PROCESSES
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Figure 4: An example of placements chosen using entropy and mutual information criteria on a
subset of the temperature data from the Intel deployment. Diamonds indicate the positions
chosen using entropy; squares the positions chosen using MI.

the criterion was derived from the “predictive” formulation H(V \A | A) in Equation (3), which is
equivalent to maximizing H(A).

Caselton and Zidek (1984) proposed a different optimization criterion, which searches for the subset
of sensor locations that most significantly reduces the uncertainty about the estimates in the rest of
the space. More formally, we consider our space as a discrete set of locations V = S ∪U composed
of two parts: a set S of possible positions where we can place sensors, and another setU of positions
of interest, where no sensor placements are possible. The goal is to place a set of k sensors that will
give us good predictions at all uninstrumented locations V \A . Specifically, we want to find

A∗ = argmaxA⊆S :|A |=kH(XV \A)−H(XV \A | XA),

that is, the set A∗ that maximally reduces the entropy over the rest of the space V \A ∗. Note that
this criterion H(XV \A)−H(XV \A | XA) is equivalent to finding the set that maximizes the mutual
information I(XA ;XV \A) between the locations A and the rest of the spaceV \A . In their follow-up
work, Caselton et al. (1992) and Zidek et al. (2000), argue against the use of mutual information
in a setting where the entropy H(XA) in the observed locations constitutes a significant part of the
total uncertainty H(XV ). Caselton et al. (1992) also argue that, in order to compute MI(A), one
needs an accurate model of P(XV ). Since then, the entropy criterion has been dominantly used
as a placement criterion. Nowadays however, the estimation of complex nonstationary models for
P(XV ), as well as computational aspects, are very well understood and handled. Furthermore, we
show empirically, that even in the sensor selection case, mutual information outperforms entropy on
several practical placement problems.

On the same simple example in Figure 4, this mutual information criterion leads to intuitively
appropriate central sensor placements that do not have the “wasted information” property of the
entropy criterion. Our experimental results in Section 9 further demonstrate the advantages in
performance of the mutual information criterion. For simplicity of notation, we will often use
MI(A) = I(XA ;XV \A) to denote the mutual information objective function. Notice that in this no-

243

I(s)(f ; yi) ' log(1 + C(s)(i, i)/�
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Baseline 1: D-Optimality 
Picks Outliers 
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Choose the periphery 

DBLP Coauthorship graph 
1711 nodes, 2898 edges. 
Labels (author area): 
•  Machine learning 
•  Data mining 
•  Information retrieval 
•  Database 
 



Baseline 2: V-Optimality 
Minimize trace of 
posterior variance [Ji 
2012] 
 
 

 

 

Improves but not ideal 

12 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 16

17

18

19

20

min
s

tr(C(s)) = tr
�
(Lu)

�1
�



Our Approach: Σ-Optimality 
and Active Surveying 
Bayesian optimal active search and survey [Garnett 2012] 

Aims to predict the average of node values 
 
 
 
Bayesian risk minimization 
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f · 1
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���ys ⇠ N
⇣ f̂(s) · 1
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Σ-Optimality on Graphs 
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Cluster centers! 

Better active learning 
accuracy 

min
s

1>C(s)1
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Insights? Break It Down 
to Greedy Application 
Write current covariance matrix 
 
 

Apply Woodbury matrix inversion formula 

 

 

 
 

 

 

The Idea: L-1 more robust than L-2 
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[ ⌃-Opt Ours ] vt+1 = argmax
i

X

j

⇢ij�j

[V-Opt Ji 2012] vt+1 = argmax
i

X

j

(⇢ij�j)
2

C(s) =
⇣
⇢ij�i�j

⌘

ij

[D-Opt Krause 2008] vt+1 = argmax
i

�2
i
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number of nodes queried
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)

 

 

R∆(ℓ)

R∆(ℓg)

≥ (1 − 1/e)R∆(ℓ)

Set optimization
Greedy optimization

16 
____________________________________________________________ 
1Friedlan & Gaubert, 2011;  Ma et. al. NIPS workshop 2012.              2Ma et. al. NIPS 2013              

Theoretical Guarantees 
for Greedy Update 
Monotone decreasing risk 
Diminishing returns  
(submodularity) 
Both V-opt1 & Σ-opt2 
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Isolet 1+2+3+4 
5-nearest neighbor graph 
Random first query 
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6238 Spoken letter recordings 
617 dimensional frequency feature 
5-nearest neighbor graph from raw input 
Random subsample 70% instances 
First query fixed at largest degree 
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Isolet 1+2+3+4 
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Active Surveying 
 



Active Search on Graphs 
[Ma 2015] 
Goal: find all positive nodes 
Pick nodes by 
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R_T\leq O(\sqrt{\sigma_{\max}} \sqrt[4]{T\Delta_T}) 
\leq 
O(\sigma_{\max}\sqrt{T}) 

\Delta_T = \sum_t s_t^2(x) \leq\sigma_{\max} T 

s_t^2(x) = \Delta_{x}(\mathbf{1}^\top L_u^{-1} \mathbf{1}) 

Active Search and Bandits on Graphs Using Sigma-Optimality
Yifei Ma* and Tzu-Kuo Huang** and Jeff Schneider*

*Auton Lab, School of Computer Science, Carnegie Mellon University. **Microsoft Research
email: yifeim@cs.cmu.edu, tkhuang@microsoft.com, schneide@cs.cmu.edu

Problem Setup

q Given an undirected graph: edges given, nodes unlabeled
q Search for (i.e., query) all positive nodes
q Feedback provided as each node is queried
q Use similarity as hint

?
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⇥X
⇥X

⇥

⇥X

Which node to query next?

Related Work

p Query strategy needs to balance:
{ Exploitation: query nodes that are mostly likely targets
{ Exploration: get the most information about label distribution

p GP-UCB [Srinivas et al. 2010; Gotovos et al. 2013]
{ Bayes assumption f ⇠ GP(µ, c)

{ Decision rule vt+1 argmaxv µt(v) + ↵t �t(v) .
Exploitation (post mean), Tradeoff, Exploration (post std)

{ In practice, often explore boundaries first ...

[Krause et al. 2008] [Gotovos et al. 2013]

p Spectral-UCB [Valko et al. 2014]
{ Graph kernel from regularized Laplacian, c(v, v0) = 1>v ˜L�11v0

{ Algorithm unchanged; theoretical guarantees improved
{ Still explores boundaries first ...

Main Contributions

⇥X

⇥

⇥

⇥⇥X

⇥X

⇥X
⇥X

⇥

⇥X

Choices in previous work Choices by our algorithm
p New exploration term: favor cluster centers over boundaries

{ Measured by improvement of ⌃-optimality [Ma et al. 2013]
p High probability regret bounds; compare with

{ [Srinivas et al. 2010; Valko et al. 2014; Contal et al. 2014]
p Empirical results

Bayes Model (GRF) [Zhu et al. 2003]

q Every node vi has value f (vi); GRF prior in vector form f ,

f ⇠ N
⇣
µ

0

= µ
0

· 1, C
0

=

˜L�1 =
�
D�A + !

0

I
��1⌘

, (1)

, log p
0

(f) ' �
NX

i=1

NX

j=1

Aij(fi � fj)
2

2

�
NX

j=1

!
0

(fj � µ
0

)

2

2

where µ
0

, !
0

are hyper-parameters, D degree diagonal matrix.
Define usual C(v, v0) = ⇢(v, v0)�(v)�(v0).

q Objective: cumulative reward in T rounds,
PT

t=1 fvt, by active
search with noisy feedback y(vt) = f (vt) + ✏t, ✏t

iid⇠ N (0, �2

n)

Our Methods

Algorithm 1 GP-SOPT and its variants
input µ

0

, A, !
0

, �n, ↵t, T ; if warm start, {v⌧ , y(v⌧)}t0⌧=1
Obtain initial N (µ

0

,C
0

) // (1)
for t = t

0

, . . . , T � 1, do
Update to conjugate posterior N (µt,Ct)

vt+1 argmax

v2V \St

µt(v) + ↵t st(v) // (2, 3, or 4)

Query label y(vt+1); include St+1 St [ {vt+1}
end for
return ST .

p Exploitation uses posterior mean µt(v).
p Exploration uses GP-SOPT (vanilla ⌃-optimality)

st(v) =

P
v02V Ct(v, v

0
)p

�2

t (v) + �2

n

(2)

or the following variants,
GP-SOPT.TT (threshold)

min

⇣
k�t(v), st(v)

⌘
(3)

GP-SOPT.TOPK (top-k terms)

max

B⇢V,|B|=k

P
v02B Ct(v, v

0
)p

�2

t (v) + �2

n

(4)

p Trade-off ↵t uses a fixed value in practice; has theoretically op-
timal choices under lenient assumptions.

Discussions: ⌃-Optimality as Exploration

p⌃-optimality originally motivated by survey risk minimization,

Vart(f � µt) = Vart

⇣
1

n
1>f � 1

n
1>µt

⌘
=

1

n2

1>Ct1

has natural tendency to go to cluster centers
p GP-SOPT exploration from one-step decrease of ⌃-optimality,

s2t(v) = 1>Ct1� 1>Ct+11

p Another explanation: as �n ! 0, st(v) =
P

v02V ⇢t(v, v
0
)�t(v

0
);

requires posterior correlation with many uncertain nodes

High Probability Regret Bounds

Define Regret RT = max

v⇤t ,non-repeat

PT
t=1 f (v

⇤
t )� f (vt)

Define Information �T = max|S|T I(yS; f )

Assume

p
f> ˜Lf  B, proper ↵t

�T  d⇤T log
⇣
1 +

T
�2

n!0

⌘
,

GP-SOPT.TT/TOPK ˜O
�
k
p
T
�
B
p

d⇤T + d⇤T
��
, any T .

Compare With ˜O
�p

T
�
B
p

d⇤T + d⇤T
��

, [ref 5]

Experiments

p Populated Places. 725 targets (administrative regions) in 5,000 nodes. Targets
spread over components of varying sizes

p Wikipedia Pages on Programming Languages. 202 targets (object-oriented
programming pages) in 5,271 nodes. Most targets reside in one large hub.

p Citation Network. 1844 targets (NIPS papers) in 14,117 nodes. Targets ap-
pear in many small components

p Enron E-mails. 803 targets (related to downfall of Enron) in 20,112 nodes

Populated places Wiki pages

Citation network Enron e-mails

Significant improvement over existing methods when exploration matters;
more robust against outliers.

1. Emile Contal, Vianney Perchet, and Nicolas Vayatis. GP-MI. ICML 2014.
2. Andreas Krause, Ajit Singh, and Carlos Guestrin. Sensor placement. JMLR 2008.
3. Yifei Ma, Roman Garnett, and Jeff Schneider. ⌃-optimality. NIPS 2013.
4. Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. GP-UCB. TIT’12
5. Michal Valko, Rémi Munos, Branislav Kveton, Tomáš Kocák. Spectral Bandits. ICML’14
6. Xuezhi Wang, Roman Garnett, and Jeff Schneider. Active search on graphs. SIGKDD 2013.
7. Xiaojin Zhu, Zoubin Ghahramani, John Lafferty, et al. Semi-supervised GRF. ICML 2003.

where, st(i) =
X

j

⇢ij�j

argmax

i
µt(i) + ↵t · st(i)



Active Search on Graphs 
[Ma 2015] 
Select observations based on 
 

 

 

Experiment 

Nodes: 5000 populated places 
Edges: wikipedia links 
Search: 725 capitals 

 among countries, cities,  
 towns and villages 
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R_T\leq O(\sqrt{\sigma_{\max}} \sqrt[4]{T\Delta_T}) 
\leq 
O(\sigma_{\max}\sqrt{T}) 

\Delta_T = \sum_t s_t^2(x) \leq\sigma_{\max} T 

s_t^2(x) = \Delta_{x}(\mathbf{1}^\top L_u^{-1} \mathbf{1}) 

where, st(i) =
X

j

⇢ij�j

argmax

i
µt(i) + ↵t · st(i)



Regret Analysis 
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R_T\leq O(\sqrt{\sigma_{\max}} \sqrt[4]{T\Delta_T}) 
\leq 
O(\sigma_{\max}\sqrt{T}) 

\Delta_T = \sum_t s_t^2(x) \leq\sigma_{\max} T 

s_t^2(x) = \Delta_{x}(\mathbf{1}^\top L_u^{-1} \mathbf{1}) 

Active Search and Bandits on Graphs Using Sigma-Optimality
Yifei Ma* and Tzu-Kuo Huang** and Jeff Schneider*

*Auton Lab, School of Computer Science, Carnegie Mellon University. **Microsoft Research
email: yifeim@cs.cmu.edu, tkhuang@microsoft.com, schneide@cs.cmu.edu

Problem Setup

q Given an undirected graph: edges given, nodes unlabeled
q Search for (i.e., query) all positive nodes
q Feedback provided as each node is queried
q Use similarity as hint

?
?

?

?

?

?
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? ??

?

?

?
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?

?
?

⇥X
⇥X

⇥

⇥X

Which node to query next?

Related Work

p Query strategy needs to balance:
{ Exploitation: query nodes that are mostly likely targets
{ Exploration: get the most information about label distribution

p GP-UCB [Srinivas et al. 2010; Gotovos et al. 2013]
{ Bayes assumption f ⇠ GP(µ, c)

{ Decision rule vt+1 argmaxv µt(v) + ↵t �t(v) .
Exploitation (post mean), Tradeoff, Exploration (post std)

{ In practice, often explore boundaries first ...

[Krause et al. 2008] [Gotovos et al. 2013]

p Spectral-UCB [Valko et al. 2014]
{ Graph kernel from regularized Laplacian, c(v, v0) = 1>v ˜L�11v0

{ Algorithm unchanged; theoretical guarantees improved
{ Still explores boundaries first ...

Main Contributions

⇥X

⇥

⇥

⇥⇥X

⇥X

⇥X
⇥X

⇥

⇥X

Choices in previous work Choices by our algorithm
p New exploration term: favor cluster centers over boundaries

{ Measured by improvement of ⌃-optimality [Ma et al. 2013]
p High probability regret bounds; compare with

{ [Srinivas et al. 2010; Valko et al. 2014; Contal et al. 2014]
p Empirical results

Bayes Model (GRF) [Zhu et al. 2003]

q Every node vi has value f (vi); GRF prior in vector form f ,

f ⇠ N
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where µ
0

, !
0

are hyper-parameters, D degree diagonal matrix.
Define usual C(v, v0) = ⇢(v, v0)�(v)�(v0).

q Objective: cumulative reward in T rounds,
PT

t=1 fvt, by active
search with noisy feedback y(vt) = f (vt) + ✏t, ✏t

iid⇠ N (0, �2

n)

Our Methods

Algorithm 1 GP-SOPT and its variants
input µ

0

, A, !
0

, �n, ↵t, T ; if warm start, {v⌧ , y(v⌧)}t0⌧=1
Obtain initial N (µ

0

,C
0

) // (1)
for t = t

0

, . . . , T � 1, do
Update to conjugate posterior N (µt,Ct)

vt+1 argmax

v2V \St

µt(v) + ↵t st(v) // (2, 3, or 4)

Query label y(vt+1); include St+1 St [ {vt+1}
end for
return ST .

p Exploitation uses posterior mean µt(v).
p Exploration uses GP-SOPT (vanilla ⌃-optimality)

st(v) =

P
v02V Ct(v, v

0
)p

�2

t (v) + �2

n

(2)

or the following variants,
GP-SOPT.TT (threshold)

min

⇣
k�t(v), st(v)

⌘
(3)

GP-SOPT.TOPK (top-k terms)

max

B⇢V,|B|=k

P
v02B Ct(v, v

0
)p

�2

t (v) + �2

n

(4)

p Trade-off ↵t uses a fixed value in practice; has theoretically op-
timal choices under lenient assumptions.

Discussions: ⌃-Optimality as Exploration

p⌃-optimality originally motivated by survey risk minimization,

Vart(f � µt) = Vart

⇣
1

n
1>f � 1

n
1>µt

⌘
=

1

n2

1>Ct1

has natural tendency to go to cluster centers
p GP-SOPT exploration from one-step decrease of ⌃-optimality,

s2t(v) = 1>Ct1� 1>Ct+11

p Another explanation: as �n ! 0, st(v) =
P

v02V ⇢t(v, v
0
)�t(v

0
);

requires posterior correlation with many uncertain nodes

High Probability Regret Bounds

Define Regret RT = max

v⇤t ,non-repeat

PT
t=1 f (v

⇤
t )� f (vt)

Define Information �T = max|S|T I(yS; f )

Assume

p
f> ˜Lf  B, proper ↵t

�T  d⇤T log
⇣
1 +

T
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, any T .

Compare With ˜O
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, [ref 5]

Experiments

p Populated Places. 725 targets (administrative regions) in 5,000 nodes. Targets
spread over components of varying sizes

p Wikipedia Pages on Programming Languages. 202 targets (object-oriented
programming pages) in 5,271 nodes. Most targets reside in one large hub.

p Citation Network. 1844 targets (NIPS papers) in 14,117 nodes. Targets ap-
pear in many small components

p Enron E-mails. 803 targets (related to downfall of Enron) in 20,112 nodes

Populated places Wiki pages

Citation network Enron e-mails

Significant improvement over existing methods when exploration matters;
more robust against outliers.

1. Emile Contal, Vianney Perchet, and Nicolas Vayatis. GP-MI. ICML 2014.
2. Andreas Krause, Ajit Singh, and Carlos Guestrin. Sensor placement. JMLR 2008.
3. Yifei Ma, Roman Garnett, and Jeff Schneider. ⌃-optimality. NIPS 2013.
4. Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. GP-UCB. TIT’12
5. Michal Valko, Rémi Munos, Branislav Kveton, Tomáš Kocák. Spectral Bandits. ICML’14
6. Xuezhi Wang, Roman Garnett, and Jeff Schneider. Active search on graphs. SIGKDD 2013.
7. Xiaojin Zhu, Zoubin Ghahramani, John Lafferty, et al. Semi-supervised GRF. ICML 2003.
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Graphs can represent complex information 
-  Links, sparse features, hierarchical structures. 

Better exploration: 

-  Σ-Optimality, UCB 

Submodularity for global optimality 

 

Summary: Active Search 
on Graphs 

Active Search and Bandits on Graphs Using Sigma-Optimality
Yifei Ma* and Tzu-Kuo Huang** and Jeff Schneider*

*Auton Lab, School of Computer Science, Carnegie Mellon University. **Microsoft Research
email: yifeim@cs.cmu.edu, tkhuang@microsoft.com, schneide@cs.cmu.edu

Problem Setup

q Given an undirected graph: edges given, nodes unlabeled
q Search for (i.e., query) all positive nodes
q Feedback provided as each node is queried
q Use similarity as hint
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⇥

⇥X

Which node to query next?

Related Work

p Query strategy needs to balance:
{ Exploitation: query nodes that are mostly likely targets
{ Exploration: get the most information about label distribution

p GP-UCB [Srinivas et al. 2010; Gotovos et al. 2013]
{ Bayes assumption f ⇠ GP(µ, c)

{ Decision rule vt+1 argmaxv µt(v) + ↵t �t(v) .
Exploitation (post mean), Tradeoff, Exploration (post std)

{ In practice, often explore boundaries first ...

[Krause et al. 2008] [Gotovos et al. 2013]

p Spectral-UCB [Valko et al. 2014]
{ Graph kernel from regularized Laplacian, c(v, v0) = 1>v ˜L�11v0

{ Algorithm unchanged; theoretical guarantees improved
{ Still explores boundaries first ...

Main Contributions

⇥X

⇥

⇥

⇥⇥X

⇥X

⇥X
⇥X

⇥

⇥X

Choices in previous work Choices by our algorithm
p New exploration term: favor cluster centers over boundaries

{ Measured by improvement of ⌃-optimality [Ma et al. 2013]
p High probability regret bounds; compare with

{ [Srinivas et al. 2010; Valko et al. 2014; Contal et al. 2014]
p Empirical results

Bayes Model (GRF) [Zhu et al. 2003]

q Every node vi has value f (vi); GRF prior in vector form f ,

f ⇠ N
⇣
µ

0

= µ
0

· 1, C
0
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˜L�1 =
�
D�A + !

0

I
��1⌘
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, log p
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Aij(fi � fj)
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�
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j=1

!
0

(fj � µ
0

)

2

2

where µ
0

, !
0

are hyper-parameters, D degree diagonal matrix.
Define usual C(v, v0) = ⇢(v, v0)�(v)�(v0).

q Objective: cumulative reward in T rounds,
PT

t=1 fvt, by active
search with noisy feedback y(vt) = f (vt) + ✏t, ✏t

iid⇠ N (0, �2

n)

Our Methods

Algorithm 1 GP-SOPT and its variants
input µ

0

, A, !
0

, �n, ↵t, T ; if warm start, {v⌧ , y(v⌧)}t0⌧=1
Obtain initial N (µ

0

,C
0

) // (1)
for t = t

0

, . . . , T � 1, do
Update to conjugate posterior N (µt,Ct)

vt+1 arg max

v2V \St

µt(v) + ↵t st(v) // (2, 3, or 4)

Query label y(vt+1); include St+1 St [ {vt+1}
end for
return ST .

p Exploitation uses posterior mean µt(v).
p Exploration uses GP-SOPT (vanilla ⌃-optimality)

st(v) =

P
v02V Ct(v, v

0
)p

�2

t (v) + �2

n

(2)

or the following variants,
GP-SOPT.TT (threshold)

min

⇣
k�t(v), st(v)

⌘
(3)

GP-SOPT.TOPK (top-k terms)

max

B⇢V,|B|=k

P
v02B Ct(v, v

0
)p

�2

t (v) + �2

n

(4)

p Trade-off ↵t uses a fixed value in practice; has theoretically op-
timal choices under lenient assumptions.

Discussions: ⌃-Optimality as Exploration

p⌃-optimality originally motivated by survey risk minimization,

Vart(f � µt) = Vart

⇣
1

n
1>f � 1

n
1>µt

⌘
=

1

n2

1>Ct1

has natural tendency to go to cluster centers
p GP-SOPT exploration from one-step decrease of ⌃-optimality,

s2t(v) = 1>Ct1� 1>Ct+11

p Another explanation: as �n ! 0, st(v) =
P

v02V ⇢t(v, v
0
)�t(v

0
);

requires posterior correlation with many uncertain nodes

High Probability Regret Bounds

Define Regret RT = max

v⇤t ,non-repeat

PT
t=1 f (v

⇤
t )� f (vt)

Define Information �T = max|S|T I(yS; f )

Assume

p
f> ˜Lf  B, proper ↵t

�T  d⇤T log
⇣
1 +

T
�2

n!0

⌘
,

GP-SOPT.TT/TOPK ˜O
�
k
p
T
�
B
p

d⇤T + d⇤T
��
, any T .

Compare With ˜O
�p

T
�
B
p

d⇤T + d⇤T
��

, [ref 5]

Experiments

p Populated Places. 725 targets (administrative regions) in 5,000 nodes. Targets
spread over components of varying sizes

p Wikipedia Pages on Programming Languages. 202 targets (object-oriented
programming pages) in 5,271 nodes. Most targets reside in one large hub.

p Citation Network. 1844 targets (NIPS papers) in 14,117 nodes. Targets ap-
pear in many small components

p Enron E-mails. 803 targets (related to downfall of Enron) in 20,112 nodes

Populated places Wiki pages

Citation network Enron e-mails

Significant improvement over existing methods when exploration matters;
more robust against outliers.

1. Emile Contal, Vianney Perchet, and Nicolas Vayatis. GP-MI. ICML 2014.
2. Andreas Krause, Ajit Singh, and Carlos Guestrin. Sensor placement. JMLR 2008.
3. Yifei Ma, Roman Garnett, and Jeff Schneider. ⌃-optimality. NIPS 2013.
4. Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. GP-UCB. TIT’12
5. Michal Valko, Rémi Munos, Branislav Kveton, Tomáš Kocák. Spectral Bandits. ICML’14
6. Xuezhi Wang, Roman Garnett, and Jeff Schneider. Active search on graphs. SIGKDD 2013.
7. Xiaojin Zhu, Zoubin Ghahramani, John Lafferty, et al. Semi-supervised GRF. ICML 2003.

where, st(i) =
X

j

⇢ij�j

argmax

i
µt(i) + ↵t · st(i)



Outline 

23 

App Challenge Previous 
state-of-the-art 

Contribution Papers 

Rec / 
Retrieval 
 

Similarity 
features 

Linear models Graphs NIPS 2013; 
UAI 2015 
 

Monitoring / 
Polling 

Reward 
defined by a 
group of points 

Point rewards Group rewards AISTATS 
2014; 2015 

Surveillance Sparse signal Point 
measurements 

Aggregate 
measurements 

AAAI 2017 



24 

Environmental monitoring 
Public opinion search 

Idea 2: Patterns Defined by a 
Group of Points [Ma 2014] 



Problem Definition 
Point actions 

On the upper level 
Pay to observe 
Assume GP connection 

Region rewards 

On the lower level 
Region integral > threshold 

Input 

GP prior 
Region definitions 
Threshold 
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f(x1) f(x2) f(xn)
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f dx

· · ·
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Maximize 1-step look-ahead expected reward 

 

 

 

Analytical solutions when reward on region integral  
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Maximize 1-step look-ahead expected reward 
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Posterior Expected reward 

Circles: collected; blue: GP posterior; gray/green: post. of region integrals. 



Water Quality  
(Dissolved Oxygen) 
Recall of target regions 
Re-picked measurements 

Active Pointillistic Pattern Search

(a) data in one run and true matching regions (black) (b) APPS collected data and posterior region probability

Figure 2: Illustration of dataset and APPS selections for one run. A point marks the location of a measurement whose value
is also reflected in its color. Every grid box is a region whose possibility of matching is reflected on gray-scale.

Figure 3: Recall curves for pond monitoring experiment.
Color bands show standard errors after 15 runs.

collecting data in a region if there is enough confidence, but
does not specifically try to push regions over the threshold,
and so its performance on this objective is inferior.

Last in the comparison are RAND and UNC. It is interest-
ing to observe that RAND was initially better than, but later
crossed by UNC. In the beginning, since UNC is purely
explorative, its reward uniformly remained low across mul-
tiple runs, whereas in some runs RAND queries can be lucky
enough to concentrate around matching regions. At a later
phase, RAND faces the coupon collector’s problem and may
select redundant boring observations, when UNC keeps mak-
ing progress at a constant rate.

Figure 2(b) illustrates the selection locations for our APPS
method. This plot shows that our APPS method can obtain
reasonable data to both explore the available space and gain
enough information around the matching regions.

4.2 Predicting Election Results (Linear Classifier)

Consider the problem of a state-level political party official
who wishes to determine which races will be won, lost, or
might go either way. As surveying likely voters is relatively
expensive, we would like to do so with as few surveys as
possible.

In a simple model of this problem, the problem of finding
races which will be won is a natural fit to a classifier of the
form h

g

(f) = �

�
w

T
f(⌅

g

) + b

g

�
. Our function f maps

from the voting precincts in the state to the vote share of a
given party in that district, with a covariance kernel defined
by demographic similarity and geographic proximity. To
account for multiple races taking place in each district (e.g.,
state and national legislators), we duplicate each precinct
with a flag for the type of election. If g is the set of all
precincts participating in a particular race and w

g

is some
constant c times the voting population of each precinct, then
w

T
f(⌅

g

) gives c times the total vote portion for the given
party in that election. In a simple model which ignores
turnout effects, the probability of winning a race is essen-
tially 1 if the underlying proportion is greater than 0.5 and
0 otherwise; this can be accomplished by setting c to some
fairly large constant, say 100, and b = � 1

2c. (An equally
simple model that nonetheless more thoroughly accounts
for unmodeled effects would just use a smaller value of c.)

We ran experiments based on this model on 2010 Pennsyl-
vania election returns [1]. For each voting precinct in the
dataset, we used the 2010 Decennial Census [18] to obtain
a total population count and percentages of the population
for gender, race, age, and housing type categories; we also
added an (x, y) location based on a Lambert conformal
conic projection of point in the precinct, and used these
features in a squared-exponential kernel. The data for each
precinct was then replicated three times and associated with
Democratic vote shares for its U.S. House of Representa-
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PA Election 
(Races vs. Precincts) 
Search for positive electoral races with precinct queries. 
Regions 
 

Yifei Ma, Dougal J. Sutherland, Roman Garnett, Jeff Schneider

tives, Pennsylvania House of Representatives, and Penn-
sylvania State Senate races; the demographic/geographic
kernel was multiplied by a positive-definite covariance ma-
trix amongst the races. We learned the hyperparameters for
this kernel by maximizing the likelihood of the model on
full 2008 election data.

Given the kernel, we set up experiments to predict 2010
races based on surveying an individual voting precinct at a
time. For simplicity, we assume that a given voting precinct
can be thoroughly surveyed (and ignore turnout effects,
voters changing their minds over time, and so on); thus ob-
servations were made with the true vote share. We seeded
the experiment with a random 10 (out of 16 226) districts
observed; APPS selected from a random subset of 100 pro-
posals at each step. We again used ✓ = 0.7.

Figure 4: Recalls for election prediction. Color bands show
standard errors after 15 runs.

Figure 4 shows the mean and standard errors of 15 runs.
APPS outperforms both random and uncertainty sampling
here, though in this case the margin over random sampling
is much narrower. This is probably because the portion of
regions which are positive in this problem is much higher,
so more points are informative.

Uncertainty sampling is in fact worse than random here,
which is not too surprising because the purely explorative
nature of UNC is even worse on the high dimensional input
space of this problem.

LSE and AAS are not applicable to this problem, as they
have no notion of weighting points (by population).

4.3 Finding Vortices (Black-Box Classifier)

We now turn to more complex pattern classifiers by studying
the task of identifying vortices in a vector field based on
limited observations of flow vectors. Linear classifiers are
insufficient for this problem,4 so we will demonstrate the

4The set of vortices is not convex: consider the midpoint be-
tween a clockwise vortex and its identical counter-clockwise case.

flexibility of our approach with a black-box classifier.

To illustrate this setting, we consider the results of a large-
scale simulation of a turbulent fluid in three dimensions over
time in the Johns Hopkins Turbulence Databases5 [13]. Fol-
lowing Sutherland et al. [16], we aim to recognize vortices
in two-dimensional slices of the data at a single timestep,
based on the same small training set of 11 vortices and 20
non-vortices, partially shown in Figure 5(a).

Recall that h
g

assigns probability estimates to the entire
function class F confined to region g. Unlike the previous
examples, it is insufficient to consider only a weighted in-
tegral of f . Instead, though, we can consider the average
flow across sectors (angular slices from the center) of our
region as building blocks in detecting vortices. We count
how many sectors have clockwise/counter-clockwise flows
to give a classification result, in three steps:

1. First, we divide a region into K sectors. In each sector,
we take the integral of the inner product between the
actual flow vectors and a template. The template is
an “ideal” vortex, but with larger weights in the center
than the periphery. This produces a K-dimensional
summary statistic L

g

(f) for each region.

2. Next, we improve robustness against different flow
speeds in the data by scaling L

g

(f) to have maximum
entry 1, and flip its sign if its mean is negative. Call
the result ˜L

g

(f).

3. Finally, we feed the normalized ˜

L

g

(f) vector through
a 2-layer neural network of the form

h

g

(f) = �

 
wout

KX

i=1

�

⇣
win ˜Lg

(f)

i

+ bin

⌘
+ bout

!
,

where � is the logistic sigmoid function.

L

g

(f) | D obeys a K-dimensional multivariate normal dis-
tribution, from which we can sample many possible L

g

(f),
which we then normalize and pass through the neural net-
work as described above. This gives samples of probabilities
h

g

, whose mean is a Monte Carlo estimate of (2).

We used K = 4 sectors, and the weights in the template
were fixed such that the length scale matches the distance
from the center to an edge. The network was optimized for
classification accuracy on the training set. We then identified
a 50⇥ 50-pixel slice of the data that contains two vortices,
some other “interesting” regions, and some “boring” regions,
mostly overlapping with Figure 11 of Sutherland et al. [16];
the region, along with the output of the classifier when given
all of the input points, is shown in Figure 5(b). We then ran
APPS, initialized with 10 uniformly random points, for 200
steps. We defined the regions to be squares of size 11⇥ 11

and spaced them every 2 points along the grid, for 400 total
5
http://turbulence.pha.jhu.edu
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Map data ©2015 GoogleReport a map error

Dots: precinct centers, same color: races; 
Build kernel on precincts by demographic info. 



Alternative Intuition 
Assuming regions are independent 
 
Select points in a region 

Variance reduction of the integral 
Bayesian quadrature [Minka 2000] 
Σ-optimality 
 

Select a region 

High posterior mean 
and 
High variance reduction 
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Identify Fluid Flow Vortices via 
Point Observations [Ma 2015] 

Active Pointillistic Pattern Search
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Figure 5: (a): Positive (top) and negative (bottom) training examples for the vortex classifier. (b): The velocity field used;
each arrow is the average of a 2⇥ 2 square of actual data points. Background color shows the probability obtained by each
region classifier on the 200 circled points; red circles mark points selected by one run of APPS initialized at the green circles.

regions. We again thresholded at ✓ = 0.7. We evaluate (2)
via a Monte Carlo approximation: first we took 4 samples
of z⇤, and then 15 samples from the posterior of f over the
window for each z⇤. Furthermore, at each step we evaluate
a random subset of 80 possible candidates x⇤.

Figure 6: Mean recalls over the search process on the vortex
experiment. Color bands show standard errors after 15 runs.

Figure 6 shows recall curves of active pattern search, un-
certainty sampling, and random selection, where for the
purpose of these curves we call the true label the output of
the classifier when all data is known, and the proposed label
is true if T

g

> ✓ at that point of the search (evaluated using
more Monte Carlo samples than in the search process, to
gain assurance in our evaluation but without increasing the
time required for the search). We can see that active pattern
search substantially outperforms uncertainty sampling and

random selection. As in Section 4.1, uncertainty sampling
was initially bad but later surpassed random selection, for
the same reason.

5 Conclusions

We have introduced the general active pointillistic pattern
search problem, where we seek to discover specific local
patterns exhibited by an underlying smooth function with a
limited observation budget. We proposed a framework built
on Bayesian decision theory for the sequential active selec-
tion of observations so as to maximize the expected number
of matching locations discovered at termination. We derived
analytical forms for the required quantities for a broad class
of models, and demonstrated the method’s efficacy across
three very different settings, using two different analytical
classifier forms and one based on sampling.
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Figure 5: (a): Positive (top) and negative (bottom) training examples for the vortex classifier. (b): The velocity field used;
each arrow is the average of a 2⇥ 2 square of actual data points. Background color shows the probability obtained by each
region classifier on the 200 circled points; red circles mark points selected by one run of APPS initialized at the green circles.

regions. We again thresholded at ✓ = 0.7. We evaluate (2)
via a Monte Carlo approximation: first we took 4 samples
of z⇤, and then 15 samples from the posterior of f over the
window for each z⇤. Furthermore, at each step we evaluate
a random subset of 80 possible candidates x⇤.

Figure 6: Mean recalls over the search process on the vortex
experiment. Color bands show standard errors after 15 runs.

Figure 6 shows recall curves of active pattern search, un-
certainty sampling, and random selection, where for the
purpose of these curves we call the true label the output of
the classifier when all data is known, and the proposed label
is true if T

g

> ✓ at that point of the search (evaluated using
more Monte Carlo samples than in the search process, to
gain assurance in our evaluation but without increasing the
time required for the search). We can see that active pattern
search substantially outperforms uncertainty sampling and

random selection. As in Section 4.1, uncertainty sampling
was initially bad but later surpassed random selection, for
the same reason.

5 Conclusions

We have introduced the general active pointillistic pattern
search problem, where we seek to discover specific local
patterns exhibited by an underlying smooth function with a
limited observation budget. We proposed a framework built
on Bayesian decision theory for the sequential active selec-
tion of observations so as to maximize the expected number
of matching locations discovered at termination. We derived
analytical forms for the required quantities for a broad class
of models, and demonstrated the method’s efficacy across
three very different settings, using two different analytical
classifier forms and one based on sampling.
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Observe point vectors 
Objective overlapping windows of 
11x11 that contain a vortex 
Classifier 2-layer neural net 
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Bayesian optimization for integral rewards 
Connection to Bayesian quadrature and Σ-optimality 

Expected reward balances exploration / exploitation 

Empirical results on applications 

Connections to multi-task BO 

Summary: Active Search 
for Region Rewards 
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Region sensing (aggregate value) 

Task: localize the sources 

•  Radiation 
•  Gas leaks 
•  Survivors 

Sparse Rewards and 
Region Sensing 

Control: both altitude and position 



Demo Active Search 
Find blue colors on a real satellite image 
Simulate search and rescue in open areas 
Used a blue filter on the RGB values, yielding scalar outcomes 
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Problem Formulation 
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Sensing model 
 
 
k-sparse signal 

 

 

aggregate  
measurement 
 

Objective: design xt to recovery the support of β* 

 

�⇤ 2 Rn
+

Discretize (1d) search space

�⇤ 2 Rn
+: vector of true values

n total grid points

k-sparse signals µ: signal value at nonzero
locations (0 elsewhere)

S⇤: set of nonzero signal locations

Region-averaging measurements

xt: sensing vector at iteration t

X : set of all feasible vectors

nonzero weight in a rectangular region

equal weight such that kxtk2 ⌘ 1s 

xt 2 Rn
+, kxtk2 = 1

yt = x

>
t �

⇤ + "t, "t ⇠ N (0, 1)



Algorithm 

Assume uniform prior 

Repeat 

Pick 

Observe 

Update 

For k-sparse, repeat the above to find each signal 
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yt

argmax

xt

It�1
�
�; y(xt)

�

⇡t(�) / ⇡t�1(�)�(yt � x

>
t �)

� 2 {µe1, µe2, . . . , µen}



Information Gain 
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Equivalent to marginal entropy, 
 

 

e.g., for binary search on the prior, 

 

 

 

For noiseless, the entropy is log(2). 

I(�; y(x)) ' H(y(x))

y(x) ⇠

8
<

:
N
⇣

µp
kxk0

, 1
⌘

w.p. ⇡(x>� > 0) =

1
2 ;

N
�
0, 1

�
otherwise.



Information Gain 
Can Be Bounded 
 
 
 

 

 

 

 
On the prior: 
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min
n µ2

12n
,
1

8

o

 I0(�, y(x)) 
µ2

2n
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10-1

p 1
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1.0e-01

information gain
ü  Pinsker’s inequality  

•  Jensen’s inequality  

ü  True information 

µp
kxk0

⇡(x>� > 0)



Theoretical and Empirical 
Results 
Theoretically optimal: uses                       measurements 

Significantly better than passive sensing under region constraints 
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Sequentially Select s for 
 

                                        s: labeled, u: unlabeled. (u,s): complementary 
 Possible strategies: (at step k with uk unlabeled)_   

Σ-Optimality1  

V-Optimality2  

Info Gain (IG)3 

Mutual (MIG)3 

Uncertainty4                              

E Error (EER)4  

\min_{v'} \Big({\bf 1}^\top 
(L_{u^k\backslash\
{v'\}})^{-1} {\bf 1}\Big) 

\min_{v'} {\rm tr} 
\Big( (L_{u^k\backslash\
{v'\}})^{-1} \Big) 
\max_{v'} \Big(L_{u^k}
^{-1}\Big)_{v',v'} 

max

v0

⇣
L�1
uk

⌘

v0,v0

min
v0

⇣
1>(Luk\{v0})

�11
⌘

min
v0

tr
⇣
(Luk\{v0})

�1
⌘

\max_{v'} \Big(L_{u^k}
^{-1}\Big)_{v',v'} 
\Big/\Big( (L_{\ell^k\cup\
{v'\}})^{-1}\Big)_{v',v'} 

max

v0

⇣
L�1
uk

⌘

v0,v0

.⇣
(L`k[{v0})

�1
⌘

v0,v0 \min_{v'} \big|\hat{y}_{v'}
\big| min

v0

��ŷv0
��

\max_{v'}
\mathbb{E}
_{y_{v'}} 
\Big[ \left( 
{\textstyle 
\sum_{u_i\in u} } 
\big|\hat{y}
_{u_i}\big| 
\Big| 
y_{v'} 
\right) 
\Big|y_{\ell^k}
\Big] 

max

v0
Eyv0

h ⇣P
ui2u

��ŷui

��
���yv0

⌘ ���y`k
i

____________________________________________________________ 
1Ma et. al. 2013.     2Zhu et. al. 2003; Ji & Han, 2012.      3Krause et. al. 2008.      4Settles 2012.                 

The Goal: Compare Sequential 
Active Learning Algos 8
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, ŷu = �L�1

u Lusys


