Active Search with Complex Models: Graphs, Sparsity, and Pattern Finding

Yifei Ma

PhD Student, advised by Jeff Schneider Machine Learning Department School of Computer Science Carnegie Mellon University

Carnegie Mellon University

Like Beer Tasting

Active Search Common Paradigm

Assume: A pool of unlabeled data Goal: find all positive instances quickly

Action: present instances and get labels

Applications

Application	Active Search Allows
Product Recommendation	New Users w/ Little Purchase History
Information Retrieval	Relevant but Underspecified Results
Environmental Monitoring	All Polluted Areas
Opinion Polling	All Winning/Swing States
Hazard/Survivor Search	Localize All Signal Hotspots

Outline

Арр	Challenge	Previous state-of-the-art	Contribution	Papers
Rec / Retrieval	Similarity features	Linear models	Graphs	NIPS 2013; UAI 2015
Monitoring / Polling	Reward defined by a group of points	Point rewards	Group rewards	AISTATS 2014; 2015
Surveillance	Sparse signal	Point measurements	Aggregate measurements	AAAI 2017

Idea 1: Active Search on Graphs

Graphs can represent complex information

- High-dim sparse features, links, hierarchical structures.

Nearest-neighbor graphs using raw image pixels

Problem Definition

Assume: known graph; unknown labels

Task: find all 🕢 nodes using the fewest label queries

Question: which nodes to query?

Task breakdown:

Exploration (learning): reduce model uncertainty [NIPS 2013] Exploitation (search): find all positives [UAI 2015]

Good Exploration Similar to Experimental Designs

Optimal Design [Gergonne, J. D. 1815]

Design experiments to optimize some criterion (e.g. variance, entropy) Blind of actual observations

Eg. regression $y_i = x_i^T \beta$ design x_i , observe y_i , learn β ?

D-optimality V-optimality Σ-optimality – Our contribution #1

Kernel regression/Gaussian process

Gaussian Random Fields [Zhu 2004]

A Bayesian model for label propagation Prior $E(\mathbf{f}) = \frac{1}{2} \sum_{i \sim j} (f_i - f_j)^2 = \frac{1}{2} \mathbf{f}^\top L \mathbf{f}$ $p(\mathbf{f}) \sim \mathcal{N}(0, L^{-1})$

 $\mathbf{f} = (\mathbf{f}_1, \dots, \mathbf{f}_n)^T$: node values. L=D-A : graph Laplacian.

Observe $f_s = y_s$, posterior is Gaussian with Mean values and covariance matrix $C_{(s)} = \begin{pmatrix} 0 & (L_{uu})^{-1} & 0 \end{pmatrix}$

Aut nab

$$L = \begin{bmatrix} 4 & -1 & & -1 \\ -1 & 4 & -1 & \\ & -1 & 4 & -1 \\ -1 & & -1 & 4 \end{bmatrix}$$

Baseline 1: D-Optimality

Minimize posterior differential entropy

 $\min_{s} \det(C_{(s)}) = \det\left((L_u)^{-1}\right)$

Greedy application maximizes marginal variance[®]

$$I_{(s)}(f; y_i) \simeq \log(1 + C_{(s)}(i, i) / \sigma_n^2)$$

Near-optimal sensor placement [Krause 2008] GP-Bandit [Srinivas 2010] Level set estimation [Gotovos 2013] Bandits on graphs [Valko 2014]

Waste samples at boundaries

Baseline 1: D-Optimality Picks Outliers

DBLP Coauthorship graph 1711 nodes, 2898 edges. Labels (author area):

Choose the periphery

- Machine learning
- Data mining
- Information retrieval
- Database

Baseline 2: V-Optimality

Minimize trace of posterior variance [Ji 2012]

 $\min_{s} \operatorname{tr}(C_{(s)}) = \operatorname{tr}\left((L_{u})^{-1}\right)$

Improves but not ideal

Our Approach: Σ-Optimality and Active Surveying

Bayesian optimal active search and survey [Garnett 2012]

Aims to predict the average of node values

$$\frac{f \cdot \mathbf{1}}{n} \Big| y_s \sim \mathcal{N}\Big(\frac{\hat{f}_{(s)} \cdot \mathbf{1}}{n}, \frac{\mathbf{1}^\top C_{(s)} \mathbf{1}}{n^2}\Big)$$

Bayesian risk minimization

$$\min_{s} \mathbf{1}^{\top} C_{(s)} \mathbf{1}$$

Σ-Optimality on Graphs

Insights? Break It Down to Greedy Application

Write current covariance matrix

$$C_{(s)} = \left(\rho_{ij}\sigma_i\sigma_j\right)_{ij}$$

Apply Woodbury matrix inversion formula

[D-Opt Krause 2008]
$$v^{t+1} = \arg \max_{i} \sigma_{i}^{2}$$

[V-Opt Ji 2012] $v^{t+1} = \arg \max_{i} \sum_{j} (\rho_{ij}\sigma_{j})^{2}$
[Σ -Opt Ours] $v^{t+1} = \arg \max_{i} \sum_{j} \rho_{ij}\sigma_{j}$

The Idea: L-1 more robust than L-2

Theoretical Guarantees for Greedy Update

Monotone decreasing risk

Diminishing returns (submodularity)

Both V-opt¹ & Σ-opt²

$$\begin{cases} \min_{v'} \left(\mathbf{1}^{\top} (L_{u^k \setminus \{v'\}})^{-1} \mathbf{1} \right) \\ \ell^{k+1} = \ell^k \cup \{v'_*\} \end{cases}$$

VS

$$\min_{\ell^{k+1}} R_{\Sigma}(\ell^{k+1}) = \left(\mathbf{1}^{\top} (L_{u^{k+1}})^{-1} \mathbf{1}\right)$$

¹Friedlan & Gaubert, 2011; Ma et. al. NIPS workshop 2012.

²Ma et. al. MAPS 2013

Isolet 1+2+3+4

Autor 6238 Spoken letter recordings 617 dimensional frequency feature 5-nearest neighbor graph from raw input Random subsample 70% instances First query fixed at largest degree

Active Surveying

DBLP Coauthorship

Cora Citation

Citeseer Citation

Active Search on Graphs [Ma 2015]

Goal: find all positive nodes

Pick nodes by

Active Search on Graphs [Ma 2015]

Select observations based on

arg max_i $\mu_t(i) + \alpha_t \cdot s_t(i)$ where, $s_t(i) = \sum_i \rho_{ij} \sigma_j$

Experiment

Nodes: 5000 populated places Edges: wikipedia links Search: 725 capitals among countries, cities, towns and villages

Regret Analysis

Define Regret	$R_T = \max_{v_t^*, \text{non-repeat}} \sum_{t=1}^T f(v_t^*) - f(v_t)$
Define Information	$\gamma_T = \max_{ S \le T} \mathcal{I}(\mathbf{y}_S; f)$
Assume	$\sqrt{\mathbf{f}^{\top} \tilde{\mathcal{L}} \mathbf{f}} \leq B$, proper α_t
	$\gamma_T \leq d_T^* \log \Big(1 + rac{T}{\sigma_n^2 \omega_0} \Big),$
GP-SOPT.TT/TOPK	$\tilde{O}(k\sqrt{T}(B\sqrt{d_T^*}+d_T^*)), \text{ any } T.$
Compare With	$\tilde{O}\left(\sqrt{T}\left(B\sqrt{d_T^*}+d_T^*\right)\right), \text{ [ref 5]}$

Summary: Active Search on Graphs

Graphs can represent complex information

Links, sparse features, hierarchical structures.

Better exploration:

- Σ-Optimality, UCB

 $\arg\max_{i} \mu_{t}(i) + \alpha_{t} \cdot s_{t}(i)$ where, $s_{t}(i) = \sum \rho_{ij}\sigma_{j}$ Submodularity for global optimality

Outline

Арр	Challenge	Previous state-of-the-art	Contribution	Papers
Rec / Retrieval	Similarity features	Linear models	Graphs	NIPS 2013; UAI 2015
Monitoring / Polling	Reward defined by a group of points	Point rewards	Group rewards	AISTATS 2014; 2015
Surveillance	Sparse signal	Point measurements	Aggregate measurements	AAAI 2017

Idea 2: Patterns Defined by a Group of Points [Ma 2014]

Auton Lab

Environmental monitoring

Public opinion search

Problem Definition

Point actions

On the upper level Pay to observe Assume GP connection

Region rewards

On the lower level

Region integral > threshold

Input

GP prior

Region definitions

Threshold

Maximize 1-step look-ahead expected reward

$$\max_{x_{t+1}} \int p_t(y_{t+1}|x_{t+1}) \cdot \sum_{g \in \mathcal{G}_t} \mathbf{1}(\operatorname{reward}_g \mid x_{1:t+1}, y_{1:t+1}) \, \mathrm{d}y_{t+1}$$

Analytical solutions when reward on region integral

Algorithm

Maximize 1-step look-ahead expected reward

$$\max_{x_{t+1}} \int p_t(y_{t+1}|x_{t+1}) \cdot \sum_{g \in \mathcal{G}_t} \mathbf{1}(\text{reward}_g \mid x_{1:t+1}, y_{1:t+1}) \, \mathrm{d}y_{t+1}$$

Circles: collected; blue: GP posterior; gray/green: post. of region integrals.

Water Quality (Dissolved Oxygen)

28

Recall of target regions

Re-picked measurements

PA Election (Races vs. Precincts)

Search for positive electoral races with precinct queries.

Dots: precinct centers, same color: races; Build kernel on precincts by demographic info.

Alternative Intuition

Assuming regions are independent

Select points in a region

Variance reduction of the integral Bayesian quadrature [Minka 2000] Σ-optimality

Select a region

High posterior mean and

High variance reduction

actions

10

0.63

0.9

5

4

value S

1

0

1.6

00.00

Identify Fluid Flow Vortices via Point Observations [Ma 2015]

Auton

Summary: Active Search for Region Rewards

Bayesian optimization for integral rewards

Connection to Bayesian quadrature and Σ -optimality

Expected reward balances exploration / exploitation

Empirical results on applications

Connections to multi-task BO

Outline

Арр	Challenge	Previous state-of-the-art	Contribution	Papers
Rec / Retrieval	Similarity features	Linear models	Graphs	NIPS 2013; UAI 2015
Monitoring / Polling	Reward defined by a group of points	Point rewards	Group rewards	AISTATS 2014; 2015
Surveillance	Sparse signal	Point measurements	Aggregate measurements	AAAI 2017

Sparse Rewards and Region Sensing

Washington

University in St.Louis

Region sensing (aggregate value)

Task: localize the sources

Control: both altitude and position

- Radiation
- Gas leaks
- Survivors

Demo Active Search

Find blue colors on a real satellite image

Simulate search and rescue in open areas

Used a blue filter on the RGB values, yielding scalar outcomes

Problem Formulation

Sensing model
$$y_t = \mathbf{x}_t^\top \boldsymbol{\beta}^* + \varepsilon_t, \ \varepsilon_t \sim \mathcal{N}(0, 1)$$
 $\boldsymbol{\beta}^* \in \mathbb{R}^n_+$
k-sparse signal $\boldsymbol{\mu}: \text{ signal value at nonzero locations (0 elsewhere)}$
 $S^*: \text{ set of nonzero signal locations}$ $\mathbf{x}_t \in \mathbb{R}^n_+, \|\mathbf{x}_t\|_2 = 1$
aggregate
measurementnonzero weight in a rectangular region
equal weights

Objective: design x_t to recovery the support of β^*

Algorithm

Assume uniform prior $\beta \in \{\mu \mathbf{e}_1, \mu \mathbf{e}_2, \dots, \mu \mathbf{e}_n\}$

Repeat

Pick $\underset{\mathbf{x}_t}{\operatorname{arg\,max}} I_{t-1}(\boldsymbol{\beta}; y(\mathbf{x}_t))$

Observe y_t

Update $\pi_t(\boldsymbol{\beta}) \propto \pi_{t-1}(\boldsymbol{\beta}) \phi(y_t - \mathbf{x}_t^\top \boldsymbol{\beta})$

For k-sparse, repeat the above to find each signal

Information Gain

Equivalent to marginal entropy,

 $I(\boldsymbol{\beta}; y(\mathbf{x})) \simeq H(y(\mathbf{x}))$

e.g., for binary search on the prior,

$$y(\mathbf{x}) \sim \begin{cases} \mathcal{N}\left(\frac{\mu}{\sqrt{\|\mathbf{x}\|_{0}}}, 1\right) & \text{w.p. } \pi(\mathbf{x}^{\top}\boldsymbol{\beta} > 0) = \frac{1}{2}; \\ \mathcal{N}(0, 1) & \text{otherwise.} \end{cases}$$

For noiseless, the entropy is log(2).

Information Gain Can Be Bounded

- ✓ Pinsker's inequality
- ✓ True information
- Jensen's inequality

On the prior:

$$\min\left\{\frac{\mu^2}{12n}, \frac{1}{8}\right\} \le I_0(\boldsymbol{\beta}, y(\mathbf{x})) \le \frac{\mu^2}{2n}$$

Theoretical and Empirical Results

Theoretically optimal: uses $\tilde{O}\left(\frac{n}{\mu^2} + k^2\right)$ measurements Significantly better than passive sensing under region constraints

Average search progression on satellite images

Summary

Арр	Challenge	Previous state-of-the-art	Contribution	Papers
Rec / Retrieval	Similarity features	Linear models	Graphs	NIPS 2013; UAI 2015
Monitoring / Polling	Reward defined by a group of points	Point rewards	Group rewards	AISTATS 2014; 2015
Surveillance	Sparse signal	Point measurements	Aggregate measurements	AAAI 2017

The Goal: Compare Sequential Active Learning Algos

Sequentially Select s for

$$\begin{array}{l} \textbf{Auton}\\ \textbf{g Agos}\\ P(y_u|y_s) \propto \mathcal{N}(y_u; \hat{y}_u, L_u^{-1})\\ L = \begin{pmatrix} L_u & L_{us}\\ L_{su} & L_s \end{pmatrix}, \quad \hat{y}_u = -L_u^{-1}L_{us}y_s \end{array}$$

s: làbeled, u: unlabeled. (u,s): complementary

Possible strategies: (at step k with u^k unlabeled)

$$\begin{split} & \boldsymbol{\Sigma} \text{-Optimality}^{1} & \min_{v'} \left(\mathbf{1}^{\top} (L_{u^{k} \setminus \{v'\}})^{-1} \mathbf{1} \right) \\ & \text{V-Optimality}^{2} & \min_{v'} \operatorname{tr} \left((L_{u^{k} \setminus \{v'\}})^{-1} \right) \\ & \text{Info Gain (IG)}^{3} & \max_{v'} \left(L_{u^{k}}^{-1} \right)_{v',v'} \\ & \text{Mutual (MIG)}^{3} & \max_{v'} \left(L_{u^{k}}^{-1} \right)_{v',v'} / \left((L_{\ell^{k} \cup \{v'\}})^{-1} \right)_{v',v'} \\ & \text{Uncertainty}^{4} & \min_{v'} |\hat{y}_{v'}| \\ & \mathbf{E} \operatorname{Error} (\mathbf{EER})^{4} & \max_{v'} \mathbb{E}_{y_{v'}} \left[\left(\sum_{u_{i} \in u} |\hat{y}_{u_{i}}| \left| y_{v'} \right) | y_{\ell^{k}} \right] \\ & \overset{4}{\longrightarrow} 4 \text{Settles 2012.} \end{split}$$