

Active Search with Complex Actions and Rewards

Yifei Ma

Thesis Defense with Committee: Jeff Schneider, Roman Garnett, Aarti Singh, Alex Smola, Ryan P. Adams

Slides: http://yma.io/thesis_slides.pdf

Active Search

Find all positives in an unknown environment using sequential queries

Data and/or labels Internal params Choose queries

Assume: A pool of unlabeled data

Collect labels

Queries: present instances and get labels (costly)

Goal: find all positive instances quickly (rewards)

Related to multi-armed bandits and Bayesian optimization

Environmental Monitoring

Search for polluted areas using a mobile sensor

Sensor measurements are costly

Decide where to collect measurements, based on:

- Previous measurements
- Spatial smoothness

Cartoon by Ying Yang

Auton

Graph of possible suggestions based on pairwise similarity

Find all good books books, based on

- Previous books and impressions
- The graph connectivity

Outline / Contributions

Active search on graphs

- (NIPS 2013; UAI 2015)

Active search with region rewards

- (AISTATS 2014;2015)

Active search with region queries

- (AAAI 2017)

Fast active search using conjugate sampling

- (in preparation)

Active Search on Graphs: Problem Definition

Assume: known graph; unknown labels

Task: find all 🕢 nodes using the fewest label queries

Question: which nodes to query?

Task breakdown:

Exploration: active learning, reduce model uncertainty [NIPS 2013] Plus Exploitation: check the likely positives, collect rewards [UAI 2015]

Gaussian Random Fields [Zhu et al., 2004]

Define f: true node value, y: observed node value,

L: Graph Laplacian = Degree – Adjacency = $\begin{pmatrix} 2 & -1 & \dots \\ -1 & 3 & -1 & \dots \\ & -1 & 2 & \dots \end{pmatrix}$

A Bayesian model where adjacent nodes tend to have same labels

f₂

 f_3 ,

Prior
$$E(\mathbf{f}) = \frac{1}{2} \sum_{i \sim j} (f_i - f_j)^2 = \frac{1}{2} \mathbf{f}^\top L \mathbf{f}$$

 $p(\mathbf{f}) \propto \exp(-E(\mathbf{f})) \sim \mathcal{N}(0, L^{-1})$

Relax y to real values, **Observe** y_S on set S, posterior is Gaussian with

$$\mathbb{E}(\mathbf{f} \mid \mathbf{y}_S) = \begin{cases} \mu_i = y_i, & \text{if } i \in S, \\ d_i \mu_i = \sum_{j \sim i} \mu_j, & \text{otherwise,} \end{cases} \quad \operatorname{Cov}(\mathbf{f} \mid \mathbf{y}_S) = \begin{pmatrix} 0 & (L_{UU})^{-1} \\ 0 & 0 \end{pmatrix}$$

Good Exploration Similar toAuton **Experimental Designs**

Optimal Design [Gergonne, J. D. 1815]

Design experiments to minimize some metric of model uncertainty in a look-ahead fashion

D-optimality (entropy) V-optimality (variance) Σ-optimality – Our contribution

Baseline 1: D-Optimality

Minimize posterior differential entropy

$$\min_{S} H(\mathbf{f} \mid \mathbf{y}_{S}) \simeq \log \det(\operatorname{Cov}(\mathbf{f} \mid \mathbf{y}_{S}))$$

Greedy application chooses by marginal variance at current step

s

$$\arg\min_{s} H(\mathbf{f} \mid \mathbf{y}_{S \cup \{s\}}) = \arg\max_{s} H(y_s \mid \mathbf{y}_S)$$
$$= \arg\max \operatorname{Var}(y_s \mid \mathbf{y}_S)$$

Not a true look-ahead measure

Sensor placement [Krause 2008] GP-Bandit [Srinivas 2010] Level set estimation [Gotovos 2013] Bandits on graphs [Valko 2014]

9

Aut

Baseline 1: D-Optimality Picks Outliers

Choose the periphery

- Machine learning
- Data mining
- Information retrieval
- Database

Auton

Baseline 2: V-Optimality

True look-ahead measure

Minimize the sum of variance of the labels

$$loss(\mathbf{y}, \mathbf{f}) = \sum_{1=1}^{n} (y_i - f_i)^2$$

Trace of posterior covariance matrix [Ji & Han 2012]

 $\min_{S} R_V(S)$ = tr (Cov(**f** | **y**_S))

Improves Can we do even better?

Our Approach: Σ-Optimality and Active Surveying

Bayesian optimal active search and survey [Garnett 2012]

Aims to predict the average of node values

$$loss(\mathbf{y}, \mathbf{f}) = \left(\sum_{1=1}^{n} y_i - \sum_{i=1}^{n} f_i\right)^2$$

Use GRF posterior distribution

$$(\mathbf{f} \mid \mathbf{y}_S) \sim \mathcal{N} \left(\mathbf{E}(\mathbf{f} \mid \mathbf{y}_S), \operatorname{Cov}(\mathbf{f} \mid \mathbf{y}_S) \right)$$

Bayesian risk minimization

$$\min_{S} R_{\Sigma}(S) = \mathbb{E} \left[\mathbb{E} \left[\text{loss}(\mathbf{y}, \mathbf{f}) \mid \mathbf{y}_{S} \right] \right] = \mathbf{1}^{\top} \text{Cov}(\mathbf{f} \mid \mathbf{y}_{S}) \mathbf{1}$$

Auton

Σ-Optimality on Graphs

 $\min_{S} R_{\Sigma}(S) = \mathbf{1}^{\top} \operatorname{Cov}(\mathbf{f} \mid \mathbf{y}_{S}) \mathbf{1}$ 10° **Cluster centers!** 20

Σ-Optimality on Graphs

Insights? Break It Down to Greedy Application

$$\left(\operatorname{Cov}(\mathbf{f} \mid \mathbf{y}_S)\right)_{ij} = \rho_{ij}\sigma_i\sigma_j$$

 ho_{ij} posterior correlation

 σ_i posterior standard deviation

Greedy selection is equivalent to [D-Opt Krause 2008] $s_{t+1} = \arg \max_i \sigma_i^2$ [V-Opt Ji 2012] $s_{t+1} = \arg \max_i \sum_j (\rho_{ij}\sigma_j)^2$ [Σ -Opt Ours] $s_{t+1} = \arg \max_i \sum_j \rho_{ij}\sigma_j$ The Idea: L-1 more robust than L-2

Aut

Multi-Step Look-Ahead and Greedy Selections

Set optimization

 $\operatorname*{arg\,min}_{S} R(S)$

However, we show near-optimality:

$$R(\emptyset) - R(S) \ge R(\emptyset) - R(S_t) \ge \left(1 - \frac{1}{e}\right) \left(R(\emptyset) - R(S)\right)$$

For D-, V-, Σ-optimality, due to

- Monotone decreasing risk
- Diminishing returns (submodularity)

[Ma et al., 2013]

Active Search and Upper Confidence Bound (UCB)

Choose between

Exploration: active learning, reduce model uncertainty [NIPS 2013] Plus Exploitation: check the likely positives, collect rewards [UAI 2015]

 $\begin{aligned} \textbf{UCB} & \text{score} = \text{immediate reward} + \text{information gain (D-optimality)} \\ s_{t+1} &= \arg\max_{i} \mu_t(i) + \alpha_t \sigma_t(i) \\ & \text{where} \begin{cases} \mu_t(i) = \mathbb{E}(f_i \mid y_{s_1}, \dots, y_{s_t}) \\ \sigma_t(i) = \operatorname{Var}(f_i \mid y_{s_1}, \dots, y_{s_t}) \end{cases} \end{aligned}$

Auton

Which node to query next?

?

Active Search on Graphs [Ma et al., 2015]

Goal: find all positive nodes

Auton

Active Search on Graphs Experiments

Recall of positive nodes against the number of queries.

Experiment

Nodes: 5000 populated places Edges: wikipedia links Search: 725 capitals among countries, cities, towns and villages

Auton

Regret Analysis

Define Regret	$R_T = \sum_{t=1}^T f(s_t^*) - \sum_{t=1}^T f(s_t)$
Define Information	$\gamma_T = \max_{ S \le T} \mathcal{I}(\mathbf{y}_S; f)$
Assume	$\mathbf{f}^{\top} L \mathbf{f} \leq B^2, \text{proper} \ \alpha_t, \\ \exists d_T^* \text{ s.t. } \gamma_T \leq d_T^* \log \left(1 + \frac{T}{\sigma^2 \omega_0} \right)$
GP-SOPT [Ma et al., 2015]	$R_T \le \tilde{O}(k\sqrt{T}(B\sqrt{d_T^*} + d_T^*)), \forall T$
c.f. Spectral-UCB [Valko et al., 2014]	$R_T \le \tilde{O}(\sqrt{T}(B\sqrt{d_T^*} + d_T^*)), \forall T$

Summary: Active Search on Auton Graphs

New exploration criterion

- Σ-Optimality, GP-SOPT
- Better empirical performance on active learning and search
- Submodularity for global optimality
- Regret Analysis

Outline / Contributions

Active search on graphs

- (NIPS 2013; UAI 2015)

Active search with region rewards

- (AISTATS 2014;2015)

Active search with region queries

- (AAAI 2017)

Fast active search using conjugate sampling

- (in preparation)

Patterns Defined by a Group Auton of Points [Ma et al., 2014]

Search for polluted areas using a mobile sensor

Sensor measurements are costly

Find entire regions

- Reward defined by the average value in a region

Cartoon by Ying Yang

Auton Simple Pattern: Region Integral

Assume a smooth function *f(x)*

Point observations

- Choose point x_i
- Observe value $z_i = f(x_i) + \varepsilon$

Region pattern

- Pre-define regions A_1, \ldots, A_K . Pattern:
 - region integral > threshold b

$$h_A(f) = \mathbb{1}_{\left\{\frac{1}{|A|} \int_A f \, \mathrm{d}x > b\right\}}$$

Auton Simple Pattern: Region Integral

Assume a smooth function f(x)

Point observations

- Choose point x_i
- Observe value $z_i = f(x_i) + \varepsilon$

Region pattern

- Pre-define regions A_1, \ldots, A_K . Pattern:
 - region integral > threshold *b*

$$h_A(f) = \mathbb{1}_{\left\{\frac{1}{|A|} \int_A f \, \mathrm{d}x > b\right\}}$$

Infer Region Patterns Without Full Observations

However, we can only collect a few data points ("+")

- True region average requires all data points

Aut

Auton Lab

Infer Region Patterns Without Full Observations

However, we can only collect a few data points ("+")

- True region average requires all data points

Instead, assume *f(x)* is drawn from a Gaussian Process (GP)

- Distribution over smooth functions
- Post. dist. given observed data

Assign rewards to a region if region integral has at least θ prob. to be greater than the threshold

$$r_A(X, \mathbf{z}) = \mathbb{1}_{\left\{ \mathbb{E}\left(h_A(f) | X, \mathbf{z}\right) > \theta \right\}}$$

Algorithm: Maximizes Expected Reward

Reward:

$$r_A(X, \mathbf{z}) = \mathbb{1}_{\left\{\mathbb{E}\left(h_A(f)|X, \mathbf{z}\right) > \theta\right\}}$$

At step t+1, choose location x_{t+1} with maximum Monte-Carlo look-ahead estimate:

$$u(x_{t+1}) = \mathbb{E}^{z_{t+1}} \sum_{k} \left[r_{A_k}(X_{1:t+1}, \mathbf{z}_{1:t+1}) \right]$$

where $z_{t+1} \sim \mathcal{GP}\left(z(x_{t+1}) \mid X_{1:t}, \mathbf{z}_{1:t} \right)$

Algorithm: Maximizes Expected Reward

Reward:

$$r_A(X, \mathbf{z}) = \mathbb{1}_{\left\{\mathbb{E}\left(h_A(f)|X, \mathbf{z}\right) > \theta\right\}}$$

At step t+1, choose location x_{t+1} with maximum Monte-Carlo look-ahead estimate:

$$u(x_{t+1}) = \mathbb{E}^{z_{t+1}} \sum_{k} \left[r_{A_k}(X_{1:t+1}, \mathbf{z}_{1:t+1}) \right]$$

where $z_{t+1} \sim \mathcal{GP}\left(z(x_{t+1}) \mid X_{1:t}, \mathbf{z}_{1:t} \right)$

Sample outcomes z_{t+1}

Algorithm: Maximizes Expected Reward

Reward:

$$r_A(X, \mathbf{z}) = \mathbb{1}_{\left\{\mathbb{E}\left(h_A(f)|X, \mathbf{z}\right) > \theta\right\}}$$

At step t+1, choose location x_{t+1} with maximum Monte-Carlo look-ahead estimate:

$$u(x_{t+1}) = \mathbb{E}^{z_{t+1}} \sum_{k} \left[r_{A_k}(X_{1:t+1}, \mathbf{z}_{1:t+1}) \right]$$

where $z_{t+1} \sim \mathcal{GP}\left(z(x_{t+1}) \mid X_{1:t}, \mathbf{z}_{1:t} \right)$

Sample outcomes z_{t+1} Compute look-ahead reward

Average for expected rewards

Closed-form solutions for region integral patterns!

Closed-Form Solution Intuitions

If regions are well-separated (assume each query only affects one region)

Then closed-form solution reduces to

1. For each region, choose a point to reduce variance of the integral

Bayesian quadrature [Minka 2000] Σ-optimality

2. Compare regions UCB-style

High posterior mean and

Large variance reduction

Aut

Water Quality (Dissolved Oxygen)

Recall of target regions

Re-picked measurements

32

Identify Fluid Flow Vortices Auton [Ma&Sutherland et al., 2015]

Observe point vectors **Objective** overlapping windows of 11x11 that contain a vortex **Classifier** 2-layer neural net

Summary: Active Search for Auton Region Patterns

Bayesian expected rewards maximization

Closed-form solution has two steps

- In each region, choose a point by Bayesian quadrature
- Choose the final query by comparing regions UCB-style

Monte-Carlo approach allows for experiments with complex patterns

Outline / Contributions

Active search on graphs

- (NIPS 2013; UAI 2015)

Active search with region rewards

- (AISTATS 2014;2015)

Active search with region queries

- (AAAI 2017)

Fast active search using conjugate sampling

- (in preparation)

Sparse Rewards and Region Auton Sensing

Region sensing (aggregate value) Task: localize the sources Control: both altitude and position

- Radiation
- Gas leaks
- Survivors

Find blue colors on a real satellite image

Simulate search and rescue in open areas

Find blue colors on a real satellite image

Simulate search and rescue in open areas

Find blue colors on a real satellite image

Simulate search and rescue in open areas

40

Find blue colors on a real satellite image

Simulate search and rescue in open areas

Find blue colors on a real satellite image

Simulate search and rescue in open areas

Find blue colors on a real satellite image

Simulate search and rescue in open areas

Find blue colors on a real satellite image

Simulate search and rescue in open areas

Find blue colors on a real satellite image

Simulate search and rescue in open areas

Problem Formulation

Problem Formulation

Sensing model

$$y_t = \mathbf{x}_t^\top \boldsymbol{\beta}^* + \varepsilon_t, \ \varepsilon_t \sim \mathcal{N}(0, 1)$$

Problem Formulation

Sensing model

$$y_t = \mathbf{x}_t^{\top} \boldsymbol{\beta}^* + \varepsilon_t, \ \varepsilon_t \sim \mathcal{N}(0, 1)$$

Binary Search

Goal: find 1-sparse signal with noiseless measurements

Binary search algorithm

Init: Set valid region to the entire environment

Repeat

Choose x_t to bisect the valid region

Observe y_t

Keep or eliminate the section corresponding to x_t

Until the valid region contains a single point

Total number of measurements:

 $O(\log_2 n) = \tilde{O}(1)$, hiding logarithmic factors

Our Algorithm Region Sensing Index (RSI)

For 1-sparse signal, assume uniform prior on

$$oldsymbol{eta} \in \{\mu \mathbf{e}_1, \mu \mathbf{e}_2, \dots, \mu \mathbf{e}_n\}$$

Repeat

Maximize Information Gain (IG) $\arg \max_{t=1} (\beta; y(\mathbf{x}_t))$ Observe y_t Update $p_t(\beta) \propto p_{t-1}(\beta)p(y_t \mid \mathbf{x}_t^\top \beta)$

Until $p_t(\beta)$ concentrates on a single point location

For k-sparse, repeat the above to find each signal or directly build distributions on all k-sparse signals

Noiseless Information Gain: ^A **Connection to Binary Search**

Equivalent to marginal entropy,

$$I(\boldsymbol{\beta}; y(\mathbf{x})) = H(y(\mathbf{x})) - \underbrace{\mathbb{E}[H(y(\mathbf{x}) \mid \boldsymbol{\beta})]}_{\mathbf{x}}$$

Const.

e.g., with noiseless measurements

$$y(\mathbf{x}) = \begin{cases} \frac{\mu}{\sqrt{\|\mathbf{x}\|_0}} & \text{if } \mathbf{x}^\top \boldsymbol{\beta}^* > 0; \\ 0 & \text{otherwise.} \end{cases}$$

 $p_t(\mathbf{x}^{\top}\boldsymbol{\beta} > 0)$: hit chance, $\frac{\mu}{\sqrt{\|\mathbf{x}\|_0}}$: measurement strength.

Maximum IG is log(2), by binary search, $p_t(\mathbf{x}^{\top} \boldsymbol{\beta} > 0) = \frac{1}{2}$.

Equivalent to marginal entropy,

$$I(\boldsymbol{\beta}; y(\mathbf{x})) = H(y(\mathbf{x})) - \underbrace{\mathbb{E}[H(y(\mathbf{x}) \mid \boldsymbol{\beta})]}_{\mathbf{X}}$$

Const.

e.g., with noisy measurements

$$y(\mathbf{x}) \sim \begin{cases} \mathcal{N}\left(\frac{\mu}{\sqrt{\|\mathbf{x}\|_0}}, 1\right) & \text{if } \mathbf{x}^\top \boldsymbol{\beta}^* > 0; \\ \mathcal{N}(0, 1) & \text{otherwise.} \end{cases}$$

 $p_t(\mathbf{x}^{\top} \boldsymbol{\beta} > 0)$: hit chance, $\frac{\mu}{\sqrt{\|\mathbf{x}\|_0}}$: measurement strength.

Maximum IG is less than log(2), but how much less?

Coverage vs. Fidelity

Noiseless IG Contour

Noiseless IG Contour

IG Contour with Noise

Before finding the true signal, for every query

$$I(\boldsymbol{\beta}, y(\mathbf{x})) \ge \min\left\{\frac{\mu^2}{12n}, \frac{1}{8}\right\}$$

Because a uniform prior on β has no more than log(n) bits of uncertainty, the expected number of measurements is at most

$$\tilde{O}\left(\frac{n}{\mu^2} + k^2\right)$$

Larger signal-to-noise ratio µ => fewer measurements Near-optimal rate Aut

Simulation Result

Fix search space (d=1, n=1024) and 1-sparse signal

As we vary signal-to-noise ratio μ , the number of measurements change At same μ , our method uses the fewest number of measurements

RSI: Our algorithm CASS*: Malloy&Nowak 2013 Point: point sensing CS: Compressive sensing

Search for Blue Pixels on Satellite Images

Satellite images like the demo

Our method finds the most number of blue pixels w/ equal observations.

Summary: Active Aerial Search

Allow queries on a region of points

- Only average value is kept
- Coverage vs. fidelity trade-off
- Propose algorithm RSI by information criteria
- Near-optimal expected number of measurements
- Experiments with real satellite images

Outline / Contributions

Active search on graphs

- (NIPS 2013; UAI 2015)

Active search with region rewards

- (AISTATS 2014;2015)

Active search with region queries

- (AAAI 2017)

Fast active search using conjugate sampling

- (in preparation)

Scalability Issues

Bayesian methods are ...

"Optimal" for Designs	Notoriously Slow	Memory Intense
Graphs with n nodes	O(n ³) initial, then O(n ²)	O(n²)
GP with n points	O(n ²) per step	O(n²)
Aerial search with k signals	O(n ^k) per step	O(n ^k)

Auton Lab

Which node to query next?

?

9

?

Thompson Sampling

Recall active search on graphs

Exploration: reduce model uncertainty

Plus Exploitation: check likely positives to collect rewards

Thompson sampling

 $\begin{array}{ll} \text{Sample} & \tilde{\mathbf{f}} \sim \mathcal{N} \left(\mathbb{E}(\mathbf{f} \mid \mathbf{y}_S), \operatorname{Cov}(\mathbf{f} \mid \mathbf{y}_S) \right) \\ \text{Pick} & s_{t+1} = \arg \max_i \tilde{f}_i \end{array}$

How to sample efficiently?

Exact Sampling from Multivariate

The usual approach

In order to draw $ilde{oldsymbol{ heta}}\sim\mathcal{N}(\mathbf{0},\mathbf{C})$

Step 1. Decompose $\mathbf{C} = \mathbf{P}\mathbf{P}^{\top}$ Step 2. Draw iid $\xi_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1)$ Step 3. Transform $\tilde{\boldsymbol{\theta}} = \mathbf{P}\boldsymbol{\xi}$

Can we make it faster when C = A⁻¹ and A is sparse?

Complexity:

Gradient descent < solving linear systems < matrix decomposition

Conjugate Sampling (in preparation)

Goal: approximately sample from $\ \ ilde{m{ heta}} pprox \mathcal{N}(m{0}, m{A}^{-1})$

1. Use *k* conjugate gradient steps to solve

 $\mathbf{A}\mathbf{x} = \mathbf{b}$, where $\mathbf{b} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

Let the conjugate gradients be $p_1, ..., p_k$

2. Keep a running sum

$$\tilde{\boldsymbol{\eta}} = \sum_{i=1}^{k} \xi_i \mathbf{p}_i$$
, where $\xi_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1)$

3. Rescale when k<n, $ilde{ heta} = \sqrt{rac{n}{k}} ilde{ heta}$

Exact Sampling When k=n

Conjugate vectors are A-orthogonal, we have

$$\mathbf{p}_i^{\top} \mathbf{A} \mathbf{p}_j = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{otherwise} \end{cases}$$

Let P=(p₁, p₂, ..., p_n),
$$\mathbf{P}^{\top} \mathbf{A} \mathbf{P} = \mathbf{I}$$
$$\mathbf{A} = \mathbf{P}^{-\top} \mathbf{P}^{-1}$$
$$\mathbf{A}^{-1} = \mathbf{P} \mathbf{P}^{\top}$$

Therefore,

$$ilde{oldsymbol{ heta}} = \mathbf{P} oldsymbol{\xi} = \sum_{i=1}^n \xi_i \mathbf{p}_i$$

Intuition When k=1

Effectively, sample any

 $\mathbf{b} \sim \mathcal{N}(0, 1)$

(A-)normalize to a unit direction vector

$$\mathbf{p}_1 = \frac{\mathbf{b}}{\sqrt{\mathbf{b}^\top \mathbf{A} \mathbf{b}}} = \frac{\mathbf{b}}{\|\mathbf{b}\|_{\mathbf{A}}}$$

Explore on the same direction with normalized scales

$$\tilde{\boldsymbol{\theta}} = \sqrt{n} \xi \mathbf{p}_1$$
, where $\xi \in \mathcal{N}(0, 1)$

Exploration may be suboptimal, but sufficient in our simulations.

Auton

Simulation on Cumulative Regret

Show cumulative regret

$$\sum_{\tau=1}^{t} [f(x^*) - f(x_{\tau})]$$

Linear function $f(\mathbf{x}) = \mathbf{x}^{\top} \boldsymbol{\theta}$

Choose any

$$\mathbf{x} \in \mathbb{R}^{100} \text{ s.t. } \|\mathbf{x}\|_2 \leq 1$$

n = 100

Unknown
$$\boldsymbol{\theta} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

Observation noise = 1

Simulation on Cumulative Regret

Show cumulative regret

$$\sum_{\tau=1}^{l} [f(x^*) - f(x_{\tau})]$$

Smooth function $f(\mathbf{x}) \sim \mathcal{GP}(0, \kappa_{\rm SE})$

Choose any

$$\mathbf{x} \in \left\{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\right\}^3 \subset \mathbb{R}^3$$

n = 125

Observation noise = 1

Auton

Comparison

Assume information matrix, **A**, is *n*-by-*n* with *m* nonzero elements. Assume *k*<<*n*.

Method and condition	Time complexity (order)	Space complexity (order)
Thompson sampling (naïve)	n ³	<i>n</i> ²
Thompson sampling (online)	n ²	<i>n</i> ²
Rank-k matrix approximation	k²(n+m)	m+kn
Rank-k conjugate sampling	k(n+m)	m+n

Disclaimer: still solves for the mean, the same order of complexity.

Conjugate Sampling Review

Bayesian methods are often slow to make decisions

- Thompson sampling draws only once to make greedy decisions
- Conjugate sampling aggressively approximates the posterior
- Faster designs on Graphs and Kronecker-GPs
- Similar regrets to exact Thompson sampling
- A lazy alternative for easy decision-making

Future work:

- On large graphs?
- Numerical stability?

Au

Auton Lab

Conclusion

Actively search for positives in an unknown environ by collecting and learning from feedback.

On graphs

- Σ-optimality as a better exploration heuristic
- Theoretical properties (global opt, cum. regret)

Region rewards

- Greedy maximization of expected rewards
- Point choices connect to Bayesian quadrature

Region queries

- Extend binary search to noisy settings
- Bound expected number of measurements

Conjugate sampling

- Fast decision making for Graphs or GPs
- Flexible for more complex scenarios

	(((Ta)) CENSUR	7
	8	

Auton Lab

Future Work

Active search on graphs

- Other models for node label distribution
- Exploration based on other spectral properties
- Use conjugate sampling for search on large graphs

Robotic applications

- Active search for areas of tumors, blood vessels, etc.
- Aerial search with multi-pixel camera
- Use reinforcement learning to imitate & improve search
- Path planning, ergodic exploration
- Unified models for region queries and region rewards
- Bipartite graph formulation
- Sampling based approach

Monte-Carlo tree search

- Games, combinatorial optimization, control with discrete states

Acknowledgements

Auton Lab

Auton

Auton

The Goal: Compare Sequential Active Learning Algos

Sequentially Select s for

$$\begin{cases} P(y_u|y_s) \propto \mathcal{N}(y_u; \hat{y}_u, L_u^{-1}) \\ L = \begin{pmatrix} L_u & L_{us} \\ L_{su} & L_s \end{pmatrix}, \quad \hat{y}_u = -L_u^{-1}L_{us}y_s \end{cases}$$

s: làbeled, u: unlabeled. (u,s): complementary

Possible strategies: (at step k with u^k unlabeled)

Contributions

Арр	Challenge	Previous approach	Contribution	Papers
Information Retrieval	Similarity features	Linear models	Graphs	NIPS 2013; UAI 2015
Monitoring / Polling	Reward defined by a group of points	Point rewards	Group rewards	AISTATS 2014; 2015
Surveillance	Sparse signal	Point measurements	Aggregate measurements	AAAI 2017
Complex systems	Infeasible to find optimal design	Thompson sampling	Faster sampling	ICML 2017 Workshop

Alternative Intuition

Assuming regions are independent

Select points in a region

Variance reduction of the integral Bayesian quadrature [Minka 2000] Σ-optimality

5

4

value S

1

0

Select a region

High posterior mean and

High variance reduction

actions

Auton Lab

Summary

Арр	Challenge	Previous approach	Contribution	
Information Retrieval	Similarity features	Linear models	Graphs	NIPS 2013; UAI 2015
Monitoring / Polling	Reward defined by a group of points	Point rewards	Group rewards	AISTATS 2014; 2015
Surveillance	Sparse signal	Point measurements	Aggregate measurements	AAAI 2017
Complex systems	Infeasible to find optimal design	Thompson sampling	Faster sampling	ICML 2017 Workshop

Linear Bandits in High-Dimensions

To max f, x_t must be close to empirical solution

Challenges:

n is large (n >> t)

use prior information on θ

Problem Specification

Assume prior

$$p_0(\boldsymbol{\theta}) \sim \mathcal{N}(\mathbf{0}, \bar{\mathbf{A}}_0^{-1})$$

 $p_t(\boldsymbol{\theta}) \sim \mathcal{N}(\boldsymbol{\mu}, \mathbf{A}^{-1})$

collect and infer posterior

where

draw

Iterate

 $\mathbf{A} = ar{\mathbf{A}}_0 + \sum_{ au < au} \mathbf{x}_{ au} \mathbf{x}_{ au}^ op$ pick $\tilde{\boldsymbol{\theta}} \sim p_t(\boldsymbol{\theta})$ $\mathbf{x}_t = \arg \max \langle \mathbf{x}, \tilde{\boldsymbol{\theta}} \rangle$

Fast and approximate sample from?

(ignore the mean
$$p_t(oldsymbol{ heta}) \sim \mathcal{N}(\mathbf{0}, \mathbf{A}^{-1})$$

Applications

Application	Active Search Allows
Environmental monitoring	Finding all polluted areas
Product recommendation	New users w/ little purchase history
Information retrieval	Relevant but underspecified results
Search and rescue	Localize all distress signals

Idea 1: Active Search on Graphs

- High-dim sparse features, links, hierarchical structures.

Important to predicting labels

Example:

A k-nearest-neighbor graph of hand-written digits

Based on Euclidean distance on concatenated pixel values

Visually similar digits form clusters

Aut

Idea 1: Active Search on Graphs

High-dim sparse features, links, hierarchical structures.

Important to predicting labels

Example:

A k-nearest-neighbor graph of hand-written digits

Based on Euclidean distance on concatenated pixel values

Visually similar digits form clusters

Same graph with more data

Aut

Idea 1: Active Search on Graphs

Graphs can be important to label predictions

Example:

A k-nearest-neighbor graph of hand-written digits

Based on Euclidean distance on concatenated pixel values

Visually similar digits form clusters

A few queries often sufficient for prediction

Auton

Isolet 1+2+3+4

6238 Spoken letter recordings617 dimensional frequency feature5-nearest neighbor graph from raw inputRandom subsample 70% instancesFirst query fixed at largest degree

Active Surveying

DBLP Coauthorship

Cora Citation

Citeseer Citation

⁸⁹

Auton Lab

Algorithm

Maximize 1-step look-ahead expected reward

$$\max_{x_{t+1}} \int p_t(y_{t+1}|x_{t+1}) \cdot \sum_{g \in \mathcal{G}_t} \mathbf{1}(\text{reward}_g \mid x_{1:t+1}, y_{1:t+1}) \, \mathrm{d}y_{t+1}$$

Circles: collected; blue: GP posterior; gray/green: post. of region integrals.

PA Election (Races vs. Precincts)

Search for positive electoral races with precinct queries.

Regions

Dots: precinct centers, same color: races; Build kernel on precincts by demographic info.

Outline / Contributions

Active search	Point rewards	Region rewards
Point queries	1. Active search on graphs NIPS 2013; UAI 2015	2. Active area search AISTATS 2014: 2015
Region queries	3. Active aerial search AAAI 2017	 A unified model (future work) 4. Conjugate Sampling (in preparation)

Simple Pattern: Region Average

Assume a smooth function *f*(*x*)

Point observations

Choose point x_i

Observe value
$$z_i = f(x_i) + \varepsilon$$

Region pattern

Pre-define regions A_g for $g = 1, \dots, G$

Pattern: region average > a given value b

$$h_A(f) = \mathbb{1}_{\left\{\frac{1}{|A|} \int_A f \, \mathrm{d}x > b\right\}}$$

Point Observations Are Smooth

Assume f(x) a smooth function for x in \mathbb{R}^d

- ⇔ Assume *f(x)* is drawn from a Gaussian Process (GP)
- A prior distribution over functions
- High prob. to draw smooth functions

Point Observations Are Smooth

Assume f(x) a smooth function for x in \mathbb{R}^d

⇔ Assume *f(x)* is drawn from a Gaussian Process (GP)

- A prior distribution over functions
- High prob. to draw smooth functions

With observed values ("+")

- Becomes a posterior dist.
- Consistent w/ observations

Point Observations Are Smooth

Assume f(x) a smooth function for x in \mathbb{R}^d

⇔ Assume *f(x)* is drawn from a Gaussian Process (GP)

- A prior distribution over functions
- High prob. to draw smooth functions

With observed values ("+")

- Becomes a posterior dist.
- Consistent w/ observations

Assign rewards if region pattern has high probability

$$r_A(X, \mathbf{z}) = \mathbb{1}_{\left\{\mathbb{E}\left(h_A(f)|X, \mathbf{z}\right) > \theta\right\}}$$

Aut

Auton Algorithm: Greedy Maximization

Reward:
$$r(X, \mathbf{z}) = \sum_{g=1}^{G} \mathbb{1}_{\left\{\mathbb{E}\left(h_{A_g}(f)|X, \mathbf{z}\right) > \theta\right\}}$$

At step *t*+1, choose location x_{t+1} to maximize

$$u(x_{t+1}) = \mathbb{E}\Big[r(X_{1:t+1}, \mathbf{z}_{1:t+1}) \mid z_{t+1} \sim \mathcal{GP}(z(x_{t+1}) \mid X_{1:t}, \mathbf{z}_{1:t})\Big]$$

How? Use Bayesian look-ahead decisions

1. Sample possible outcomes from GP posterior

$$\tilde{z}_{t+1}^{(1)}, \dots, \tilde{z}_{t+1}^{(s)} \sim \mathcal{GP}(z(x_{t+1}) \mid X_{1:t}, \mathbf{z}_{1:t})$$

2. For each \tilde{z}_{t+1} , estimate (by additional sampling if necessary) $\tilde{r} = r(X_{1:t} \cup \{x_{t+1}\}, \mathbf{z}_{1:t} \cup \{\tilde{z}_{t+1}\})$ 3. Estimate $\hat{u}(x_{t+1}) = \frac{1}{s} \sum_{j=1}^{s} \tilde{r}^{(j)}$ 97

Auton Lab

Demo Active Search

Find blue colors on a real satellite image

Simulate search and rescue in open areas

Used a blue filter on the RGB values, yielding scalar outcomes

