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Active Search

Find all positives in an unknown environment using sequential queries

Assume: A pool of unlabeled data

Collect labels
Queries: present instances and get labels (costly)

Goal: find all positive instances quickly (rewards)

Related to multi-armed bandits and Bayesian optimization

Artwork by [Javad Azimi] 2
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Environmental Monitoring

Search for polluted areas using a mobile sensor

Sensor measurements are costly
Decide where to collect measurements, based on:

-  Previous measurements

- Spatial smoothness

e

Cartoon by Ying Yang
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Search for Interesting Books

Graph of possible suggestions based on pairwise similarity
Find all good books books, based on
- Previous books and impressions

- The graph connectivity

[https://atechnologyjobisnoexcuse.com/2006/09/network-of-amazon-products/] 4



Outline / Contributions !

Active search on graphs
- (NIPS 2013; UAI 2015)

Active search with region rewards
- (AISTATS 2014;2015) P

Active search with region queries
- (AAAI 2017) X

Fast active search using conjugate sampling

- (in preparation)



Active Search on Graphs:  “lab
Problem Definition

Assume: known graph; unknown labels
Task: find all v nodes using the fewest label queries

Question: which nodes to query?

Task breakdown:
Exploration: active learning, reduce model uncertainty [NIPS 2013]

Plus Exploitation: check the likely positives, collect rewards [UAI 2015]



Gaussian Random
Fields [Zhu et al., 2004]

Define f: true node value, y: observed node value,
2 -1
L: Graph Laplacian = Degree —Adjacency = | _; 3 _1

A Bayesian model where adjacent nodes tend to have same labels

Prior E(f) = %Z(f’b - fj)2 _ %fTLf

1~]

p(f) oc exp(—E(f)) ~ N(0, L)

Relax y to real values, Observe yg on set S, posterior is Gaussian with

( i = Yi, if 1 € S7 0
E(f1ys) =\ dips =S gy, otherwise, ~ Cov(flys)=| (Lvv)™"
0

L gt



Good Exploration Similar to “[aB
Experimental Designs

Optimal Design [Gergonne, J. D. 1815]

Design experiments to minimize some metric of model uncertainty
in a look-ahead fashion

D-optimality (entropy)
V-optimality (variance)
2-optimality — Our contribution

[By NOAA (http://www.photolib.noaa.gov/htmls/theb1982.htm) [Public domain], via Wikimedia Commons] 8



Baseline 1: D-Optimality

Minimize posterior differential entropy

mgnH(f | ys) =~ log det(Cov(f | ys))

Greedy application chooses by marginal variance at current step
arg min H(f | ysu(s)) = argmax H(ys | ys)
= argmax Var(ys | ys)
Not a true look-ahead measure
Sensor placement [Krause 2008]

GP-Bandit [Srinivas 2010] 2
Level set estimation [Gotovos 2013] %
Bandits on graphs [Valko 2014] =

LN .
~—~ Waste samples at boundaries -13
0 400 [ ength (m) 1,000 1,400
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Baseline 1: D-Optimality AutaB
Picks Outliers

Choose the periphery

DBLP Coauthorship graph

1711 nodes, 2898 edges.

Labels (author area):

« Machine learning

« Data mining

« Information retrieval 1

« Database 7}
2




Baseline 2: V-Optimality

True look-ahead measure

Minimize the sum of
variance of the labels

n

2
loss(y, f) = Z (yi — fi)
1:1 ‘ .‘M."\S;&. ] \
Trace of posterior P2 = Ve
(0% NS O o F"’!‘:‘(‘g

covariance matrix
[Ji & Han 2012]

min Ry (95)

= tr (Cov(f | ys))

Improves
Can we do even better? , 5

a



Our Approach: Z-Optimality AUEZB
and Active Surveying

Bayesian optimal active search and survey [Garnett 2012]

Aims to predict the average of node values

loss(y, f (Z yi — Z ﬁ)

Use GRF posterior distribution
(flys) ~N(E(f | ys),Cov(f | ys))

Bayesian risk minimization

mgn Rs(S) =E[E loss(y, f) | ys]] = 1" Cov(f | ys)1

12



2-Optimality on Graphs

mbin R5(S) =1"Cov(f | ys)1

Cluster centers!




2-Optimality on Graphs

mbin Rs(S) =1"Cov(f|ys)1

Cluster centers!

2

Better active learning
accuracy

0.8

Prediction accuracy
After 20 queries

0.67

0.4;

0.2}

unc ig mig eer vopt\sopt

@«>



Insights? Break It Down to  ““laB
Greedy Application

Simplify notations (Cov(f ‘ YS)) = Pij0i0;
]

P15 posterior correlation 0 ; posterior standard deviation

Greedy selection is equivalent to
2

D-Opt Krause 2008| s;+1 = arg max o;

'V-Opt Ji 2012| s;11 = arg max Z(pijaj)z
J

| 2-Opt Ours | s;11 = arg ma,xz Pi;0;
J

The Idea: L-1 more robust than L-2

15



Multi-Step Look-Ahead and "“VIaF
Greedy Selections

Greedy optimization 7t \
sy = argmin R(S;_1 U {s}) RN
St = St—l U {St} m4v v\\

is not equal to

Set optimization 2/ e Set optimization
arg min R(S) T et "
Howeves;', we show near-optimality:
R(0) ~ R(S) > RO) - R(S) > (1 - ) (RO) ~ R(S))

For D-, V-, Z-optimality, due to

- Monotone decreasing risk
[Ma et al., 2013]

16

- Diminishing returns (submodularity)



Active Search and Upper AUER
Confidence Bound (UCB)

Choose between

Exploration: active learning, reduce model uncertainty [NIPS 2013]

Plus Exploitation: check the likely positives, collect rewards [UAI 2015]

UcCB score = immediate reward + information gain (D-optimality)

St+1 = argmax it (1) + o (i)

. :]E 1 S19°° > S¢
here {ut(@) (fily Ys,)

o¢(1) = Var(fi | Ysys---»Ys,)
17



Active Search on Graphs
[Ma et al., 2015]

Goal: find all positive nodes

GP-SOPT St+1 — alI'g mz.aX Mt(i) T Q- gt(i)
where, g;(i) = Z Pij0

Choices in previous work Choices by our algorithm

18



Active Search on Graphs
Experiments

AUEah

Recall of positive nodes against the number of queries.

Experiment

Nodes: 5000 populated places

Edges: wikipedia links
Search: 725 capitals

among countries, cities,

towns and villages

Our method
| GP-SOPT ™\ _

Random

0 01 02 03 04 05 06

Fraction of data queried

19



Y
Regret Analysis

_ T T
Define Regret Rr = thl f(sy) — thl f(st)

Define Information 7T = |I§1|%}§,I(y s; f)

f'Lf < B* proper oy,

T
Assume d7 s.t. yr < dy log(l T3 )
o~Wo

c.f. Spectral-UCB o < O(NT (BT §
[Valko et al., 2014] r < O(VT(B\/d} + d7)),VT

20



Summary: Active Search on "Vlaf
Graphs

New exploration criterion
- 2-Optimality, GP-SOPT

- Better empirical performance on active learning and
search

- Submodularity for global optimality
- Regret Analysis

21



Outline / Contributions !

Active search on graphs
- (NIPS 2013; UAI 2015)

Active search with region rewards
- (AISTATS 2014;2015) P

Active search with region queries
- (AAAI 2017) X

Fast active search using conjugate sampling

- (in preparation)
22



Patterns Defined by a Group I3
of Points [Ma et al., 2014]

Search for polluted areas using a mobile sensor
Sensor measurements are costly
Find entire regions

- Reward defined by the average value in a region

Cartoon by Ying Yang

23



AEaB

Simple Pattern: Region Integral

Assume a smooth function f(x)
Point observations

Choose point x;

Observe value z; = f(x;) + ¢ 3l
Region pattern 5 |
Pre-define regions A,,...,Ax. E 1+
Pattern: :? o!
region integral > threshold b 756 Al
>
_ 27
ha(f) = 1{@ [4f de>b} 5l
0 1 > 3 4
input x

24



AEaB

Simple Pattern: Region Integral

Assume a smooth function f(x)

Point observations

Choose point x; ha(f) =1 0 . 0
Observe value z; = f(x) + € ' '

| |

3 | | | I

Region pattern 5 | | I
Pre-define regions A,,...,Ax. E 1 I I : hreslr%old

Pattern: L'; 0 : | : :

region integral > threshold b % 1 : : : :

> I I I
h =1 =

A=Yy )

A | Ay | %" | Ay |

0 1 2 3 4

input x



Infer Region Patterns “tab
Without Full Observations

However, we can only collect a few data points (“+”)

True region average requires all data points

| |

3 l | | |
+ | | | |

@:f . I ithreshold
=S A S
= | | | |
= | | | |
> o T | |
| | | |
CLAL L Ay Ay Ay
0 1 2 3 4

input x



Infer Region Patterns “taB
Without Full Observations

However, we can only collect a few data points (“+”)
- True region average requires all data points

Instead, assume f(x) is drawn

from a Gaussian Process (GP) ra= 1 I 0 I 0 I 0 :
- Distribution over smooth functions 3 : : : :
- Post. dist. given observed data o 2 | Ithresiold
Assign rewards to a region if = 1 ,A V‘
region integral has at least @ prob. o 0 | |
to be greater than the threshold % -1 I I
> o | | I
rA (X, Z) — 1 I I I I
E\ha(f)|X,z)>0 -3 | ! ! |
{ ( ) } Ay | Ay | AS | Ay I
0 1 2 3 4
mput x



Algorithm: Maximizes a

Expected Reward

Reward: TA(X,Z) — 1{E(hA(f)\X,z)>0}

At step t+1, rg= 1 0 0

choose location x,,, with maximum l l

| |
Monte-Carlo look-ahead estimate: 3 . : : : :
2
O | | | |
u(wpyr) = B+ Z [T‘Ak (X1;t+1,Z1;t+1)] S 1 —— —t :threS}%OId
& - Ol ] 1+ 1 4+
b,
where zi1 ~ GP <2($t+1) | Xl:t,ZLt) = : ' : !
= | | | |
> o I | |
I I I I
-3 I I I I
Al | A2 | A3 1 A4 |
0 1 2 3 4
input x



Algorithm: Maximizes
Expected Reward
Reward: ralXz) = Leg (i, ()1x.2) >0}
At step t+1, rg= 1 0 0 0
choose location x,,, with maximum . : : : :
Monte-Carlo look-ahead estimate: !
onte-Carlo look-ahead estimate ! | : : T:Zéﬂl ﬁ .
u(Tet1) :EzmZ{rAk(XlthaZl:Hl)} \Ei 1 m— —=f +—+ v :O
k ”q? 0! I + e
where z;41 ~ 973<Z($t+1) ’Xlztazlzt) = : : :: :
= L+ TRl
Sample outcomes z,, -2 | l n |
-3 | | I |
A | Ay | AS Ll Ay I
0 1 2 Lt+1 4
input x



Aut o
Algorithm: Maximizes utop
Expected Reward

Reward: TA(X,Z) — 1{E(hA(f)\X,z)>0}

At step t+1, Fi= 1 0 . 0
choose location x,,, with maximum l

| | |
Monte-Carlo look-ahead estimate: d : : ' '
=2 S dsiold
u(zeyr) = E¥H Z{mk (Xlit-I-laZl:t-I—l)] E —f —+——+H— v :O
k - 0! I 1 n 4
< K |
where zi11 ~ GP <2($t+1) | Xl:t,let) - : .
T@ -1 | | 1 |
> 5 R ¥ |
Sample outcomes z,, , | | 0 |
-3 | | 1 |
Compute look-ahead reward Ay | Ay | Az, Ay
Average for expected rewards 0 1 2 Li+1 4
input x

Closed-form solutions for region integral patterns! 30



Closed-Form Solution AUpSD
Intuitions

For patterns defined by region integrals

If regions are well-separated (assume each query only affects one region)
Then closed-form solution reduces to

1. For each region, choose a point to reduce variance of the integral

Bayesian quadrature [Minka 2000] I |

|
A 3 | | I |
-optimality 4+ 1 | Hepp 1 o
2
= :+ -I':' gV I threshold
. - 1 e |
2. Compare regions UCB-style S~ 0! '+5t+1 1+ n 4+
High posterior mean = . ' il '
and = -1 I | I I
> 5 NI I +2; 1
Large variance reduction ) X I I I
-3 1 | I I
Al 1L A2 | AS L1 A4 1]
0 Li+1 2 Li+1 T+l

input x
31
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o
o))

recall for matching regions
o
N

o

©

©
~

Water Quality AUER
(Dissolved Oxygen)

Recall of target regions

Re-picked measurements

50 100 150 200 250
number of data points collected

32



d Flow Vortices ““tab

Identify Flu

., 2015]

[Ma&Sutheriand et al

Observe point vectors

-~ Al
- ]
-~ o
L
~ 7/

" I
A .
S 2 -
L
'y

’

Objective overlapping windows of
11x11 that contain a vortex

Classifier 2-layer neural net

-

Negative

example

1é0 14‘10 1é0 150 260
33

100

80

Positive

uoibs. Buiyorew Joj [[eos

© 0 ¥ O § -

s
et e e N NANN % / ./O/// \
e A\ I\
PR N X OGN N o W 1/
e SONNNRNRNRNNNAN Y 7/
SN SN CCCEN ’/

IEAN N NCRUO NN R ey

“1 \f/////¢///«w/pwqo- I

AN G s s P

b w\\;df;o/f///////@» LS orrr Pr s
Vgh \\AIAIA/A/A/J/:/o/U/ /o/ \ v s s
,f.\\o;lAL.IA/oa/////, V 707 oooorr 2 7
NI sO\b‘lll'l/loldlnaul N 1070 o P
,,,.\\\A\nlalalf,\w\\sx\Q‘\\\\
,¢,_\\\A\OIIJIAII \\\\\\O\\\\\\\‘
[ V=00 t t 7 L)) s rr
¢¢-_~O\n5u\t\A|A[Oz\\\\\\\\\\\\q\v\v
TR s\\\\\\nw‘\\‘\\\v
v Q@ | N R s o .ok |
v P TR s e PR .
Vo AN E) () TR R N
Y [, iy s L .
[ AN R Py » - =
[} ¢ 1 2 0 ¢ LS L 7 s -
| S Y




Summary: Active Search for “VlIal

Region Patterns

Bayesian expected rewards maximization

Closed-form solution has two steps

- In each region, choose a point by Bayesian quadrature

- Choose the final query by comparing regions UCB-style

Monte-Carlo approach allows for experiments with complex

patterns

34



Outline / Contributions !

Active search on graphs
- (NIPS 2013; UAI 2015)

Active search with region rewards
- (AISTATS 2014;2015) P

Active search with region queries
- (AAAI 2017) X

Fast active search using conjugate sampling

- (in preparation)
35



Sparse Rewards and Region taB
SenSing

Region sensing (aggregate value)

Task: localize the sources

Control: both altitude and position

« Radiation
e (Gas leaks
e Survivors

A“EZB &8 Washington

Carnegie Mellon  UniversityinSt.Louis



Demo Active Search -

Find blue colors on a real satellite image
Simulate search and rescue in open areas

(Used a blue filter on the RGB values, yielding scalar outcomes)

100 %

150

200

0 50 100 150 200 250 37



Demo Active Search ten

Find blue colors on a real satellite image
Simulate search and rescue in open areas

(Used a blue filter on the RGB values, yielding scalar outcomes)
0

50
100 [
150 '.

200

0 50 100 150 200 250 38



Demo Active Search ten

Find blue colors on a real satellite image
Simulate search and rescue in open areas

(Used a blue filter on the RGB values, yielding scalar outcomes)
0

50
100 [
150 '.

200

0 50 100 150 200 250 39



Demo Active Search fab

Find blue colors on a real satellite image
Simulate search and rescue in open areas

(Used a blue filter on the RGB values, yielding scalar outcomes)
0

50
100
150 & '. »

200"

0 50 100 150 200 250 40



Demo Active Search fab

Find blue colors on a real satellite image
Simulate search and rescue in open areas

(Used a blue filter on the RGB values, yielding scalar outcomes)
0

50
100
150 & '. »

200"

0 50 100 150 200 250 41



Demo Active Search fab

Find blue colors on a real satellite image
Simulate search and rescue in open areas

(Used a blue filter on the RGB values, yielding scalar outcomes)
0

50
100
150

200

0 50 100 150 200 250 42



Demo Active Search fab

Find blue colors on a real satellite image
Simulate search and rescue in open areas

(Used a blue filter on the RGB values, yielding scalar outcomes)
0

50
100
150

200

0 50 100 150 200 250 43



Demo Active Search fab

Find blue colors on a real satellite image
Simulate search and rescue in open areas

(Used a blue filter on the RGB values, yielding scalar outcomes)
0

50

100

150

200

0 50 100 150 200 250 44



AUEah

Problem Formulation

1d search, n total grid points - signal value at nonzero
locations (0 elsewhere)

k-sparse signal 00000000 v CO0000000C000000

B* e R S*: set of nonzero signal locations

aggregate measurement strength
measurement

x; € RY, ||x¢|l2 =1

Sensing model ye =%, B* +ep, e ~ N(0,1)

Objective: design x, to recovery the support of 8*

45



AUEah

Problem Formulation

1d search, n total grid points - signal value at nonzero
locations (0 elsewhere)

k-sparse signal 00000000 v CO0000000C000000

B* e R S*: set of nonzero signal locations

aggregate measurement strength
measurement

x; € RY, ||x¢|l2 =1

Sensing model ye =%, B* +ep, e ~ N(0,1)

Objective: design x, to recovery the support of 8*

46



AUEah

Problem Formulation

1d search, n total grid points - signal value at nonzero
locations (0 elsewhere)

k-sparse signal 0000000000 v COOO000O00000000
B* e R S*: set of nonzero signal locations
aggregate

measurement strength
measurement

x; € RY, ||x¢|l2 =1

Sensing model ye =%, B* +ep, e ~ N(0,1)

Objective: design x, to recovery the support of 8*

47



Not Compressive Sensing ta
Or Distilled Sampling
1d search, n total grid points ‘ f p: signal value at nonzero

. locations (0 elsewhere)
k-sparse signal OCOCO000C0 v 0000000008 00000

B* e R S*: set of nonzero signal locations

aggregate Non-uniform weights
measurement can encode locations

x; € RY, ||x¢|l2 =1

Sensing model ye =%, B* +ep, e ~ N(0,1)

Objective: design x, to recovery the support of 8*

48



AUEah

Binary Search

Goal: find 1-sparse signal with noiseless measurements

Binary search algorithm

Init: Set valid region to the entire environment
Repeat
Choose x; to bisect the valid region

Observe y;,
Keep or eliminate the section corresponding to x;

Until the valid region contains a single point

Total number of measurements:
O(logy n) = O(1), hiding logarithmic factors

49



Our Algorithm i - -
Region Sensing Index (RSI)

For 1-sparse signal, assume uniform prior on
/8 S {:uela Hea, . .. 7luen}
Repeat

Maximize Information Gain (IG) argmax ;1 (8;y(x))
Observe ¥ Xt
Update p:(B) x pi—1(B)p(y: | x, B)

Until p:(3) concentrates on a single point location

For k-sparse, repeat the above to find each signal or
directly build distributions on all k-sparse signals

50



Noiseless Information Gain: ““lab
Connection to Binary Search

Equivalent to marginal entropy,

I(B;y(x)) = H(y(x)) — E[H(y(x) | B)]

_J/
Vs

Const.

e.g., with noiseless measurements

o T 3% < ().
y(x){\/MXo x>0

0 otherwise.

]
pi(x' B >0): hit chance, VIIxllo : measurement strength.

. . . T 1
Maximum IG is log(2), by binary search, p:(x 8 >0) = 5"

51



Information Gain with Noise

Equivalent to marginal entropy,

I(B;y(x)) = H(y(x)) — E[H(y(x) | B)]

e.g., with noisy mea

y(x) ~ <

y

4

Vs

Const.
surements

N(\/lﬁmg) if xT8* > 0:

pe(x' B> 0): hit chance,

Maximum IG is less than log(2), but how much less?

N(0,1) otherwise.
\
L

AUEah

Vxllo : measurement strength.

52



Coverage vs. Fidelity

__Information gain

[
107}
21
107} Larger region
107}
p(x' B> 0) 107} t01
Hit chance 107} - _
(coverage) 10°} Smaller region -
107} ’
1010'2 1071 10° 10t 102
H measurement strength
%[0 (fidelity)
pt(xT,B > 0)
]
%[0

53



Noiseless I1G Contour

__Information gain

[

10}
102 : 1.0e-01
- Larger region
107}
pi(x" B> 0)10%) @ 0-0:
Hit chance 107} = _
(coverage) 10°} Smaller-region-
107} ]
10707 107! 10° 101 102
H measurement strength
%[0 (fidelity)
pt(xT,B > 0)
]

Ix]lo

54



Noiseless I1G Contour

__Information gain

10, - -
10_t2'j1— t=2 t=3 1.0e-01
107}
pi(x B> 0)10%)
Hit chance 107}
(coverage) 196 _
1077}
9107 107! 10° 101 102
H measurement strength
%[0 (fidelity)
pt(xT,B > 0)
]
1xlo

AUEah
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IG Contour with Noise

information galn

107 \ \ —
10 2 1.0e-01
1073 \
al
pi(x' B >0) 107 % t—i t=2  t=3
Hit chance 107} Yo T NG -
(coverage) 1g-6 , N
10”7 \ 0@\0\9
1072 101 10° 101 102
H measurement strength
1x]lo (fidelity)
pt(xT,B > 0)
]
1%l

56



AUEah

Number of Measurements

Before finding the true signal, for every query

I1(B,y(x)) > min{%, %}

Because a uniform prior on  has no more than log(n) bits of
uncertainty, the expected number of measurements is at most

O (% +k2>

Larger signal-to-noise ratiopy => fewer measurements

Near-optimal rate

57



AUEah

Simulation Result

Fix search space (d=1, n=1024) and 1-sparse signal

As we vary signal-to-noise ratio uy, the number of measurements change

At same u, our method uses the fewest number of measurements
Passive

RSI: Our algorithm
CASS*: Malloy&Nowak 2013

Point: point sensing

e
o
N
D

256

CS: Compressive sensing

# Measurements
= (@)}
(@) RN AN

N

1 I 1 |i Lill i Illli.lII i

1 4 16 64256
Signal value,

58



Search for Blue Pixels on !
Satellite Images

Satellite images like the demo

Our method finds the most number of blue pixels w/ equal observations.

Ours
Lo[FREL Ny
- CASS* g 5
"’0 8 =@=Point

. 06 00 SR
o ; ; ;

u 204 Lt L
© : : :

o L '~ & i 0.0 | MRV 'ﬁ Passive

' L L L a1 , oy 4 4 a1

’ ' i m 0.1% - 1.0% 10.0%

‘ ‘ percent feasible observations

59
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Summary: Active Aerial AUER
Search

Allow queries on a region of points

- Only average value is kept

- Coverage vs. fidelity trade-off

- Propose algorithm RSI by information criteria

- Near-optimal expected number of measurements

- Experiments with real satellite images

60



Outline / Contributions !

Active search on graphs
- (NIPS 2013; UAI 2015)

Active search with region rewards
- (AISTATS 2014;2015) P

Active search with region queries
- (AAAI 2017) X

Fast active search using conjugate sampling

- (in preparation)
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Aute
a

Scalability Issues

Bayesian methods are ...

“Optimal” for Desighns  Notoriously Slow Memory Intense

. O(n3) initial, 5

Graphs with n nodes then O(n?) O(n?)
GP with n points O(n?) per step O(n?)
Aerial search with k K .
signals O(nk) per step O(nk)

62



Recall active search on graphs

Exploration: reduce model uncertainty

Plus Exploitation: check likely positives to collect rewards

Thompson sampling

Sample f ~ N(E(f \ ys), COV(f \ YS))

How to sample efficiently?

63



Exact Sampling from MultivariateAut;B
Normal Distributions

The usual approach

~

In order todraw 0 ~ A/(0, C)

Step 1. Decompose C = PP
o

Step 2. Drawiid & ~ N(0,1)

Step 3. Transform 0 = P¢

Can we make it faster when C = A1 and A is sparse?

Complexity:

Gradient descent < solving linear systems < matrix decomposition

64



- - Aute
Conjugate Sampling tab
(in preparation)

Goal: approximately sample from 0 ~ ,/\/'(O, A_l)

1. Use k conjugate gradient steps to solve

Ax = b, where b ~ N(0,1)
Let the conjugate gradients be p;,...,p, % P
2. Keep a running sum Q\\ /
k o 2\ P1
~ 11
n = Z&;pi, where &; ~ N (0, 1) % ¢ Dx
i=1 ,
) b g% ¢ 1
3. Rescale whenk<n, @ = ﬁﬁ H{

k

[Plot adapted from
wikipedia by Oleg Alexandrov] 65



Exact Sampling When k=n

Conjugate vectors are A-orthogonal, we have

-
TAp. —
Pi 2P 1 otherwise

{0 if i £ j

Let P=(p1, P .-y pn)!

P'AP =1 D,
A=p Tp! X))
Al =PPT 2 ps
\

Therefore,

[Plot adapted from
wikipedia by Oleg Alexandrov]

66
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Intuition When k=1

Effectively, sample any

b~ N(0,1)
(A-)normalize to a unit direction vector
b b

p p— - —
" VbTAb  |bla

Explore on the same direction
with normalized scales

0 = \/nép1, where £ € N(0,1)

Exploration may be suboptimal,
but sufficient in our simulations.

AUEah

[Plot adapted from
wikipedia by Oleg Alexandrov]

67



Simulation on Cumulative  "VlaB
Regret t

Show cumulative regret Z[f(x*) — fz;)]

=1

Linear function f(x)=x'6

Choose any
x € R st [|x]|; < 1

et
@ 8000 -

n =100 GEJ
| -

Unknown 6 ~ N (0,1) v 6000

Observation noise = 1 S 4000 - —e— random
:é —@— Thompson
= 2000 - —A— conjugate-1
~ —+=- O(y/TlogT)

0 1000 2000 3000 4000 5000
number of measurements
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Simulation on Cumulative  "Ul3B
Regret t

Show cumulative regret Z[f(f*) — f(iUT)]

T=1

Smooth function f(x) ~ GP(0, ksg)

Choose any
113 113 - R3 700 - I I«
x€{0,%,3,2,1} " CR y "
< 600 '
n=125 o) '
D 500 | . , ,
Kernel length-scale = 0.3 2 400} 5 - —— S 3
. . _ — : : : : :
Observation noise = 1 r___? 300 - o random
c 200 . ®® Thompson |]
3 : : . |A—A conjugate-1
S A T e e o TeeT) ]
|

0 | | |
0 2000 4000 6000 8000 10000 12000
number of measurements
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Comparison

Assume information matrix, A, is n-by-n with m nonzero elements.

Assume k<<n.

Method and condition Time complexity ~ Space complexity

(order) (order)
Thompson sampling (naive) n3 n?
Thompson sampling (online) n? n?
Rank-k matrix approximation k?(n+m) m+kn

Disclaimer: still solves for the mean, the same order of complexity.
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Conjugate Sampling Review

Bayesian methods are often slow to make decisions

Thompson sampling draws only once to make greedy decisions
Conjugate sampling aggressively approximates the posterior
Faster designs on Graphs and Kronecker-GPs

Similar regrets to exact Thompson sampling

A lazy alternative for easy decision-making

Future work:

On large graphs?

Numerical stability?

/1



Conclusion

Actively search for positives in an unknown environ
by collecting and learning from feedback.

On graphs

- 2-optimality as a better exploration heuristic

- Theoretical properties (global opt, cum. regret)
Region rewards

- Greedy maximization of expected rewards

- Point choices connect to Bayesian quadrature
Region queries

- Extend binary search to noisy settings

- Bound expected number of measurements
Conjugate sampling

- Fast decision making for Graphs or GPs

- Flexible for more complex scenarios




AuaB
Future Work

Active search on graphs

- Other models for node label distribution

- Exploration based on other spectral properties

- Use conjugate sampling for search on large graphs
Robotic applications

Active search for areas of tumors, blood vessels, etc.
Aerial search with multi-pixel camera

Use reinforcement learning to imitate & improve search
Path planning, ergodic exploration

Unified models for region queries and region rewards
- Bipartite graph formulation

- Sampling based approach

Monte-Carlo tree search

- Games, combinatorial optimization, control with discrete states
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The Goal: Compare Sequential a

Active Learning Algos

Sequentially Select s for

/N

Ly,
LSU

L =

(P(yulys) < N (Yus Jus L)
L.,

@ _L 1Lusys

Iabeled u: unlabeled. (u,s): complementary
Possible strateqies: (at step k with u* unlabeled)

> -Optimality min (1T(Luk\{v,})—11)
V-Optimality? min tr(( Lo, {U,})—l)

Info Gain (IG)’ max (L!)

Mutual (MIG)3 max (L;,})U/’UI J(Coop) )
Uncertainty* min | g, | % |

E Error (EER)* max K, , [ (Zu y”’) ‘yﬁk’} @3

1Ma et. al. 2013. 2Zhu et. al. 2003; Ji & Han, 2012.

3Krause et. al. 2008. 4Settles 2012.
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Contributions

App Challenge Previous Contribution Papers
approach

Information  Similarity features Linear models Graphs NIPS 2013;

Retrieval UAI'2015

Monitoring/ Reward defined by Point rewards Group rewards AISTATS
Polling a group of points 2014; 2015

Surveillance Sparse signal Point Aggregate AAAI 2017
measurements measurements

Complex Infeasible to find Thompson Faster ICML 2017
systems optimal design sampling sampling Workshop
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Alternative Intuition

1

AUEah

0 @0 Nl
Assuming regions are independent *°| ., .. 4 '
0.8f .
. o 1731 ,f% 6 F-1.4
sl 4 AP L N B
. - - AR Ty 8
Select points in a region o5t | ,d o ] 1
0.4t 8 1
. . . ~ q74 — s ° L-08
Variance reduction of the integral o3 *» SF
. . 0.2} oo " 3 06
Bayesian quadrature [Minka 2000] 5 9 g
Z-Optl mal Ity 0O 0:2 8 0.I4 0.6 1 ?)7.8 1
5-
Select a region 4t
High posterior mean 23 Sg )
© | :
and Sol —
High variance reduction N
X X X X v
0

actions



Summary
App Challenge Previous Contribution
approach
Information  Similarity features Linear models Graphs NIPS 2013;
Retrieval UAI 2015
Monitoring/ Reward defined by Pointrewards Group rewards AISTATS
Polling a group of points 2014; 2015
Surveillance Sparse signal Point Aggregate AAAI 2017
measurements measurements
Complex Infeasible to find Thompson Faster ICML 2017
systems optimal design sampling sampling Workshop
%é\/ ¥
_
=)/ w
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Linear Bandits in AutaB

High-Dimensions

Problem: max with unknown 6
choose x, ..., )ll;(é_é}qu_el{ti%lw s.t.
observe x| <1,V

evaluateon J7 = f(?if) + &
X = % ZTZl X

Intuitions:

To infer 6, x,.. must cover most directions in R"

Tomax f, x, must be close to empirical solution

Challenges:
n is large (n >> {)
use prior information on 6
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Problem Specification

Assume prior

Iterate po(6) ~ N (0, Aal)

collect and infer posterior

where
QA T
draw A=A)+ ZT<t XX

pick 0 ~ p+(0) ~
x; = arg max(x, 6)

[] Fast and approximate sample from?

(ignore the mean?t(e) ~N(0,A7)

pt(0) ~ N (p, A_l)

AUEah
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Applications

Application
Environmental monitoring
Product recommendation

Information retrieval

Search and rescue

Active Search Allows

Finding all polluted areas

New users w/ little purchase history
Relevant but underspecified results

Localize all distress signals

) . . E
ol

E B
op @ B




Idea 1: Active Search on AUpSD
Graphs

Graphs can represent complex information

- High-dim sparse features, links, hierarchical structures.

Important to predicting labels

Example:

:F

% /\ /

A k-nearest-neighbor graph \

of hand-written digits ___—— \\/
Based on Euclidean distance %

on concatenated pixel values

Visually similar digits form clusters
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Idea 1: Active Search on !
Graphs

Graphs can represent complex information

- High-dim sparse features, links, hierarchical structures.
Important to predicting labels
Example:

A k-nearest-neighbor graph
of hand-written digits

Based on Euclidean distance
on concatenated pixel values

Visually similar digits form clusters

Same graph with more data
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Idea 1: Active Search on !
Graphs

Graphs can be important to label predictions

Example:

A k-nearest-neighbor graph
of hand-written digits

Based on Euclidean distance
on concatenated pixel values

Visually similar digits form clusters

A few queries often sufficient for prediction ¢ —5
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Isolet 1+2+3+4

0.8

0.7

accuracy betteF——

o
—

&

6238 Spoken letter recordings
617 dimensional frequency feature
9-nearest neighbor graph from raw input
Random subsample 70% instances
First query fixed at largest degree
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Active Surveying
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. AUED
Algorithm

Maximize 1-step look-ahead expected reward

max /pt(yt+1\$t+1) ' Z 1(rewardy | £1:¢41, Y1:e41) dYet1

Tt41
gegy
5 _
0.08
4 i /
— | 0.06|
o3 L
= 69 0.04}
> 2 —
0.02}
LA A A3 Ay As Ag T 0s 0 0.5 T
actions >k

_ Expected reward
Posterior

Circles: collected; blue: GP posterior; gray/green: post. of region integrals.
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PA Election -

(Races vs. Precincts)

Search for positive electoral races with precinct queries.

Regions

Dots: precinct centers, same color: races;
Build kernel on precincts by demographic info.

recall for matching regions

50 100 150 200 250 300 350 400 450 500
number of data points collected
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Outline / Contributions

Active search Point rewards Region rewards
Point queries 1. Active search on graphs | 2. Active area search

NIPS 2013; UAI 2015 AISTATS 2014: 2015

Region queries 3. Active aerial search * A unified model

AAAI 2017 | (future work)

4. Conjugate Sampling
(in preparation)
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Simple Pattern:
Region Average

Assume a smooth function f(x)

Point observations f(x)

Choose point x;
Observe value z; = f(x;) + ¢

Region pattern b —

Pre-define regions Ag for g=1,....G
Pattern: region average > a given value b

ha(f) = Ly raess}
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Point Observations AUpSD
Are Smooth

Assume f(x) a smooth function for x in R?

<~ Assume f(x) is drawn from a Gaussian Process (GP)

- A prior distribution over functions

- High prob. to draw smooth functions

2

output, f(x)

input, x

94



Point Observations AutaB
Are Smooth

Assume f(x) a smooth function for x in R?
<~ Assume f(x) is drawn from a Gaussian Process (GP)

- A prior distribution over functions

- High prob. to draw smooth functions
With observed values (“+”)
- Becomes a posterior dist.

- Consistent w/ observations

input, x
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Point Observations AutaB
Are Smooth

Assume f(x) a smooth function for x in R?

<~ Assume f(x) is drawn from a Gaussian Process (GP)

- A prior distribution over functions

- High prob. to draw smooth functiong p 0 1 0 O

With observed values (“+”)

- Becomes a posterior dist.

5

- Consistent w/ observations e

3

Assign rewards if region E
pattern has high probability -1

ra(X,z) = 1{E<hA(f>|X7Z)>9}
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Algorithm: Greedy Maximization ' Lab
of Expected Reward

G
Reward: r(X,z) = Zl{E(hAg(f)|X,z)>8}
g=1

At step t+1, choose location x,,, to maximize

U(let+1) = E[T(Xl:t+1azl:t+1) Zt41 QP(z(xt+1) | Xl:tazl:t)}

How? Use Bayesian look-ahead decisions

1.

Sample possible outcomes from GP posterior

58317 SO 5151)1 ~ QP(z(xt+1) | X1:t, Zl:t)

For each Z:11, estimate (by additional sampling if necessary)
7 =7r(X1: U{Tip1}, 210 U{Z41})

. 1 s .
Estimate ? _ ~(7)
w(riaq) p E j:lr o



Auto
a

Demo Active Search

Find blue colors on a real satellite image

Simulate search and rescue in open areas

Used a blue filter on the RGB values, yielding scalar outcomes

100 B

150

200

0

50 100 150 200 250

(a) True point values

0

50

100

150

200

0 50 100 150 200 250

(b) search sequence
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