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Active Search 

2 Artwork by [Javad Azimi] 

Find all positives in an unknown environment using sequential queries 

 

 

 

 

 

 

Assume: A pool of unlabeled data 

Queries: present instances and get labels (costly) 

Goal: find all positive instances quickly (rewards) 

Related to multi-armed bandits and Bayesian optimization 

Data and/or labels Internal params Choose queries 

Collect labels 



Environmental Monitoring 
Search for polluted areas using a mobile sensor 
Sensor measurements are costly 
Decide where to collect measurements, based on: 

-  Previous measurements 

-  Spatial smoothness 

3 
Cartoon by Ying Yang 



Search for Interesting Books 
Graph of possible suggestions based on pairwise similarity 
Find all good books books, based on 
-  Previous books and impressions 

-  The graph connectivity 

4 [https://atechnologyjobisnoexcuse.com/2006/09/network-of-amazon-products/] 



Outline / Contributions 
Active search on graphs 
-  (NIPS 2013; UAI 2015) 

 
 
Active search with region rewards 

-  (AISTATS 2014;2015) 

 
 
Active search with region queries 
-  (AAAI 2017) 

 
 
Fast active search using conjugate sampling 

-  (in preparation) 
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Active Search on Graphs: 
Problem Definition 
Assume: known graph; unknown labels 

Task: find all         nodes using the fewest label queries 

Question: which nodes to query? 

 

 

 

 

Task breakdown: 

Exploration: active learning, reduce model uncertainty [NIPS 2013] 

Plus Exploitation: check the likely positives, collect rewards [UAI 2015] 
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Gaussian Random 
Fields [Zhu et al., 2004] 

Define f: true node value, y: observed node value, 

L: Graph Laplacian = Degree – Adjacency = 

 

A Bayesian model where adjacent nodes tend to have same labels 

Prior 

 

 
Relax y to real values, Observe yS on set S, posterior is Gaussian with 
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Good Exploration Similar to 
Experimental Designs 

Optimal Design [Gergonne, J. D. 1815] 
Design experiments to minimize some metric of model uncertainty 
in a look-ahead fashion 
 
D-optimality (entropy) 
V-optimality (variance) 
Σ-optimality – Our contribution 
 

8 [By NOAA (http://www.photolib.noaa.gov/htmls/theb1982.htm) [Public domain], via Wikimedia Commons] 



Baseline 1: D-Optimality 
Minimize posterior differential entropy 
 
Greedy application chooses by marginal variance at current step 
 
 
 
Not a true look-ahead measure 

    Sensor placement [Krause 2008] 

GP-Bandit [Srinivas 2010] 
Level set estimation [Gotovos 2013] 
Bandits on graphs [Valko 2014] 
 

       Waste samples at boundaries 
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min

S
H(f | yS) ' log det(Cov(f | yS))

argmin

s
H(f | yS[{s}) = argmax

s
H(ys | yS)

= argmax

s
Var(ys | yS)



Baseline 1: D-Optimality 
Picks Outliers 

Choose the periphery 
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DBLP Coauthorship graph 
1711 nodes, 2898 edges. 
Labels (author area): 
•  Machine learning 
•  Data mining 
•  Information retrieval 
•  Database 
 



Baseline 2: V-Optimality 
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True look-ahead measure 
Minimize the sum of 
variance of the labels 
 

 

Trace of posterior 
covariance matrix 
[Ji & Han 2012] 

 

 
 

Improves 
Can we do even better? 

loss(y, f) =
nX

1=1

(yi � fi)
2

min

S
RV (S)

= tr (Cov(f | yS))



Our Approach: Σ-Optimality 
and Active Surveying 
 
Bayesian optimal active search and survey [Garnett 2012] 

Aims to predict the average of node values 
 
 
 
Use GRF posterior distribution 
 
 
 
Bayesian risk minimization 
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(f | yS) ⇠ N (E(f | yS),Cov(f | yS))

loss(y, f) =

 
nX

1=1

yi �
nX

i=1

fi

!2

min

S
R⌃(S) = E [E [loss(y, f) | yS ]] = 1>

Cov(f | yS)1



Σ-Optimality on Graphs 

 

Cluster centers! 
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Σ-Optimality on Graphs 

 

Cluster centers! 

Better active learning 
accuracy 
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Insights? Break It Down to 
Greedy Application 
 
Simplify notations 
 
          posterior correlation                     posterior standard deviation 
 
Greedy selection is equivalent to 

 

 

 

 
 

The Idea: L-1 more robust than L-2 
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[D-Opt Krause 2008] st+1 = argmax
i

�2
i

[V-Opt Ji 2012] st+1 = argmax
i

X

j

(⇢ij�j)
2

[ ⌃-Opt Ours ] st+1 = argmax
i

X

j

⇢ij�j

⇣
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R∆(ℓ)

R∆(ℓg)

≥ (1 − 1/e)R∆(ℓ)

Set optimization
Greedy optimization

Multi-Step Look-Ahead and 
Greedy Selections 
 
Greedy optimization 
 
 

is not equal to 

Set optimization 

 

However, we show near-optimality: 
 

For D-, V-, Σ-optimality, due to 

-  Monotone decreasing risk 

-  Diminishing returns (submodularity) 
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8
<

:
st = argmin

s
R(St�1 [ {s})

St = St�1 [ {st}

argmin
S

R(S)

R(;)�R(S) � R(;)�R(St) �
⇣
1� 1

e

⌘⇣
R(;)�R(S)

⌘

[Ma et al., 2013] 



Active Search and Upper 
Confidence Bound (UCB) 

 
 
 
Choose between 
Exploration: active learning, reduce model uncertainty [NIPS 2013] 

Plus Exploitation: check the likely positives, collect rewards [UAI 2015] 

 

UCB         score = immediate reward + information gain (D-optimality) 
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st+1 = argmax

i
µt(i) + ↵t�t(i)

where

(
µt(i) = E(fi | ys1 , . . . , yst)
�t(i) = Var(fi | ys1 , . . . , yst)



Active Search on Graphs 
[Ma et al., 2015] 
 
Goal: find all positive nodes 
 

GP-SOPT 
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R_T\leq O(\sqrt{\sigma_{\max}} \sqrt[4]{T\Delta_T}) 
\leq 
O(\sigma_{\max}\sqrt{T}) 

\Delta_T = \sum_t s_t^2(x) \leq\sigma_{\max} T 

s_t^2(x) = \Delta_{x}(\mathbf{1}^\top L_u^{-1} \mathbf{1}) 

Active Search and Bandits on Graphs Using Sigma-Optimality
Yifei Ma* and Tzu-Kuo Huang** and Jeff Schneider*

*Auton Lab, School of Computer Science, Carnegie Mellon University. **Microsoft Research
email: yifeim@cs.cmu.edu, tkhuang@microsoft.com, schneide@cs.cmu.edu

Problem Setup

q Given an undirected graph: edges given, nodes unlabeled
q Search for (i.e., query) all positive nodes
q Feedback provided as each node is queried
q Use similarity as hint

?
?

?

?

?

?

?

? ??

?

?

?
?

?

?
?

⇥X
⇥X

⇥

⇥X

Which node to query next?

Related Work

p Query strategy needs to balance:
{ Exploitation: query nodes that are mostly likely targets
{ Exploration: get the most information about label distribution

p GP-UCB [Srinivas et al. 2010; Gotovos et al. 2013]
{ Bayes assumption f ⇠ GP(µ, c)

{ Decision rule vt+1 argmaxv µt(v) + ↵t �t(v) .
Exploitation (post mean), Tradeoff, Exploration (post std)

{ In practice, often explore boundaries first ...

[Krause et al. 2008] [Gotovos et al. 2013]

p Spectral-UCB [Valko et al. 2014]
{ Graph kernel from regularized Laplacian, c(v, v0) = 1>v ˜L�11v0

{ Algorithm unchanged; theoretical guarantees improved
{ Still explores boundaries first ...

Main Contributions

⇥X

⇥

⇥

⇥⇥X

⇥X

⇥X
⇥X

⇥

⇥X

Choices in previous work Choices by our algorithm
p New exploration term: favor cluster centers over boundaries

{ Measured by improvement of ⌃-optimality [Ma et al. 2013]
p High probability regret bounds; compare with

{ [Srinivas et al. 2010; Valko et al. 2014; Contal et al. 2014]
p Empirical results

Bayes Model (GRF) [Zhu et al. 2003]

q Every node vi has value f (vi); GRF prior in vector form f ,

f ⇠ N
⇣
µ

0

= µ
0

· 1, C
0

=

˜L�1 =
�
D�A + !

0

I
��1⌘

, (1)

, log p
0
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Aij(fi � fj)
2

2

�
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j=1

!
0

(fj � µ
0

)

2

2

where µ
0

, !
0

are hyper-parameters, D degree diagonal matrix.
Define usual C(v, v0) = ⇢(v, v0)�(v)�(v0).

q Objective: cumulative reward in T rounds,
PT

t=1 fvt, by active
search with noisy feedback y(vt) = f (vt) + ✏t, ✏t

iid⇠ N (0, �2

n)

Our Methods

Algorithm 1 GP-SOPT and its variants
input µ

0

, A, !
0

, �n, ↵t, T ; if warm start, {v⌧ , y(v⌧)}t0⌧=1
Obtain initial N (µ

0

,C
0

) // (1)
for t = t

0

, . . . , T � 1, do
Update to conjugate posterior N (µt,Ct)

vt+1 argmax

v2V \St

µt(v) + ↵t st(v) // (2, 3, or 4)

Query label y(vt+1); include St+1 St [ {vt+1}
end for
return ST .

p Exploitation uses posterior mean µt(v).
p Exploration uses GP-SOPT (vanilla ⌃-optimality)

st(v) =

P
v02V Ct(v, v

0
)p

�2

t (v) + �2

n

(2)

or the following variants,
GP-SOPT.TT (threshold)

min

⇣
k�t(v), st(v)

⌘
(3)

GP-SOPT.TOPK (top-k terms)

max

B⇢V,|B|=k

P
v02B Ct(v, v

0
)p

�2

t (v) + �2

n

(4)

p Trade-off ↵t uses a fixed value in practice; has theoretically op-
timal choices under lenient assumptions.

Discussions: ⌃-Optimality as Exploration

p⌃-optimality originally motivated by survey risk minimization,

Vart(f � µt) = Vart

⇣
1

n
1>f � 1

n
1>µt

⌘
=

1

n2

1>Ct1

has natural tendency to go to cluster centers
p GP-SOPT exploration from one-step decrease of ⌃-optimality,

s2t(v) = 1>Ct1� 1>Ct+11

p Another explanation: as �n ! 0, st(v) =
P

v02V ⇢t(v, v
0
)�t(v

0
);

requires posterior correlation with many uncertain nodes

High Probability Regret Bounds

Define Regret RT = max

v⇤t ,non-repeat

PT
t=1 f (v

⇤
t )� f (vt)

Define Information �T = max|S|T I(yS; f )

Assume

p
f> ˜Lf  B, proper ↵t

�T  d⇤T log
⇣
1 +

T
�2

n!0

⌘
,

GP-SOPT.TT/TOPK ˜O
�
k
p
T
�
B
p

d⇤T + d⇤T
��
, any T .

Compare With ˜O
�p

T
�
B
p

d⇤T + d⇤T
��

, [ref 5]

Experiments

p Populated Places. 725 targets (administrative regions) in 5,000 nodes. Targets
spread over components of varying sizes

p Wikipedia Pages on Programming Languages. 202 targets (object-oriented
programming pages) in 5,271 nodes. Most targets reside in one large hub.

p Citation Network. 1844 targets (NIPS papers) in 14,117 nodes. Targets ap-
pear in many small components

p Enron E-mails. 803 targets (related to downfall of Enron) in 20,112 nodes

Populated places Wiki pages

Citation network Enron e-mails

Significant improvement over existing methods when exploration matters;
more robust against outliers.

1. Emile Contal, Vianney Perchet, and Nicolas Vayatis. GP-MI. ICML 2014.
2. Andreas Krause, Ajit Singh, and Carlos Guestrin. Sensor placement. JMLR 2008.
3. Yifei Ma, Roman Garnett, and Jeff Schneider. ⌃-optimality. NIPS 2013.
4. Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. GP-UCB. TIT’12
5. Michal Valko, Rémi Munos, Branislav Kveton, Tomáš Kocák. Spectral Bandits. ICML’14
6. Xuezhi Wang, Roman Garnett, and Jeff Schneider. Active search on graphs. SIGKDD 2013.
7. Xiaojin Zhu, Zoubin Ghahramani, John Lafferty, et al. Semi-supervised GRF. ICML 2003.

st+1 = argmax

i
µt(i) + ↵t · gt(i)

where, gt(i) =
X

j2V

⇢ij�j



Active Search on Graphs 
Experiments 
 
Recall of positive nodes against the number of queries. 
 

Experiment 

Nodes: 5000 populated places 
Edges: wikipedia links 
Search: 725 capitals 

 among countries, cities,  
 towns and villages 
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R_T\leq O(\sqrt{\sigma_{\max}} \sqrt[4]{T\Delta_T}) 
\leq 
O(\sigma_{\max}\sqrt{T}) 

\Delta_T = \sum_t s_t^2(x) \leq\sigma_{\max} T 

s_t^2(x) = \Delta_{x}(\mathbf{1}^\top L_u^{-1} \mathbf{1}) 

GP-SOPT 



Regret Analysis 

Define Regret 

Define Information 

Assume 

GP-SOPT 
[Ma et al., 2015] 

c.f. Spectral-UCB 
[Valko et al., 2014] 
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�T = max

|S|T
I(yS ; f)

f>Lf  B2, proper ↵t,

9d⇤T s.t. �T  d⇤T log

⇣
1 +

T

�2!0

⌘

RT  Õ(k
p
T (B

p
d⇤T + d⇤T )), 8T

RT  Õ(
p
T (B

p
d⇤T + d⇤T )), 8T

RT =
XT

t=1
f(s⇤t )�

XT

t=1
f(st)



Summary: Active Search on 
Graphs 
 
New exploration criterion 

-  Σ-Optimality, GP-SOPT 

-  Better empirical performance on active learning and 
search 

-  Submodularity for global optimality 

-  Regret Analysis 
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Outline / Contributions 
Active search on graphs 
-  (NIPS 2013; UAI 2015) 

 
 
Active search with region rewards 

-  (AISTATS 2014;2015) 

 
 
Active search with region queries 
-  (AAAI 2017) 

 
 
Fast active search using conjugate sampling 

-  (in preparation) 
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Patterns Defined by a Group 
of Points [Ma et al., 2014] 
Search for polluted areas using a mobile sensor 

Sensor measurements are costly 

Find entire regions 

-  Reward defined by the average value in a region 

23 
Cartoon by Ying Yang 
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Simple Pattern: Region Integral 

Assume a smooth function f(x)  
Point observations 

Choose point xi 
Observe value zi = f(xi) + ε 

Region pattern 

Pre-define regions A1,…,AK. 
Pattern: 
   region integral > threshold b 
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|A|
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Simple Pattern: Region Integral 

Assume a smooth function f(x)  
Point observations 

Choose point xi 
Observe value zi = f(xi) + ε 

Region pattern 

Pre-define regions A1,…,AK. 
Pattern: 
   region integral > threshold b 
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|A|
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Infer Region Patterns 
Without Full Observations 
However, we can only collect a few data points (“+”) 
-  True region average requires all data points 
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Infer Region Patterns 
Without Full Observations 
However, we can only collect a few data points (“+”) 
-  True region average requires all data points 

Instead, assume f(x) is drawn 
from a Gaussian Process (GP) 

-  Distribution over smooth functions 

-  Post. dist. given observed data 

Assign rewards to a region if 
region integral has at least θ prob. 
to be greater than the threshold 
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rA(X, z) = 1nE
�
hA(f)|X,z

�
>✓

o



0 1 2 3 4
input x

-3
-2
-1
0
1
2
3

va
lu

e
f
(x

)

A1 A2 A3 A4

threshold

rA = 1 0 0 0

Algorithm: Maximizes 
Expected Reward 
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Reward: 

 

At step t+1, 
choose location xt+1 with maximum 
Monte-Carlo look-ahead estimate: 

 

 

 

 

 

rA(X, z) = 1nE
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�
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Expected Reward 
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Reward: 

 

At step t+1, 
choose location xt+1 with maximum 
Monte-Carlo look-ahead estimate: 

 

 

 

Sample outcomes zt+1 
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Algorithm: Maximizes 
Expected Reward 
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Reward: 

 

At step t+1, 
choose location xt+1 with maximum 
Monte-Carlo look-ahead estimate: 

 

 

 

Sample outcomes zt+1 

Compute look-ahead reward 

Average for expected rewards 

Closed-form solutions for region integral patterns! 

rA(X, z) = 1nE
�
hA(f)|X,z

�
>✓

o
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Closed-Form Solution 
Intuitions 
For patterns defined by region integrals  
If regions are well-separated (assume each query only affects one region) 

Then closed-form solution reduces to 

1. For each region, choose a point to reduce variance of the integral 

Bayesian quadrature [Minka 2000] 
Σ-optimality 
 

2. Compare regions UCB-style 

High posterior mean 
and 
Large variance reduction 
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Water Quality  
(Dissolved Oxygen) 
Recall of target regions 
Re-picked measurements 
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Active Pointillistic Pattern Search

(a) data in one run and true matching regions (black) (b) APPS collected data and posterior region probability

Figure 2: Illustration of dataset and APPS selections for one run. A point marks the location of a measurement whose value
is also reflected in its color. Every grid box is a region whose possibility of matching is reflected on gray-scale.

Figure 3: Recall curves for pond monitoring experiment.
Color bands show standard errors after 15 runs.

collecting data in a region if there is enough confidence, but
does not specifically try to push regions over the threshold,
and so its performance on this objective is inferior.

Last in the comparison are RAND and UNC. It is interest-
ing to observe that RAND was initially better than, but later
crossed by UNC. In the beginning, since UNC is purely
explorative, its reward uniformly remained low across mul-
tiple runs, whereas in some runs RAND queries can be lucky
enough to concentrate around matching regions. At a later
phase, RAND faces the coupon collector’s problem and may
select redundant boring observations, when UNC keeps mak-
ing progress at a constant rate.

Figure 2(b) illustrates the selection locations for our APPS
method. This plot shows that our APPS method can obtain
reasonable data to both explore the available space and gain
enough information around the matching regions.

4.2 Predicting Election Results (Linear Classifier)

Consider the problem of a state-level political party official
who wishes to determine which races will be won, lost, or
might go either way. As surveying likely voters is relatively
expensive, we would like to do so with as few surveys as
possible.

In a simple model of this problem, the problem of finding
races which will be won is a natural fit to a classifier of the
form h

g

(f) = �

�
w

T
f(⌅

g

) + b

g

�
. Our function f maps

from the voting precincts in the state to the vote share of a
given party in that district, with a covariance kernel defined
by demographic similarity and geographic proximity. To
account for multiple races taking place in each district (e.g.,
state and national legislators), we duplicate each precinct
with a flag for the type of election. If g is the set of all
precincts participating in a particular race and w

g

is some
constant c times the voting population of each precinct, then
w

T
f(⌅

g

) gives c times the total vote portion for the given
party in that election. In a simple model which ignores
turnout effects, the probability of winning a race is essen-
tially 1 if the underlying proportion is greater than 0.5 and
0 otherwise; this can be accomplished by setting c to some
fairly large constant, say 100, and b = � 1

2c. (An equally
simple model that nonetheless more thoroughly accounts
for unmodeled effects would just use a smaller value of c.)

We ran experiments based on this model on 2010 Pennsyl-
vania election returns [1]. For each voting precinct in the
dataset, we used the 2010 Decennial Census [18] to obtain
a total population count and percentages of the population
for gender, race, age, and housing type categories; we also
added an (x, y) location based on a Lambert conformal
conic projection of point in the precinct, and used these
features in a squared-exponential kernel. The data for each
precinct was then replicated three times and associated with
Democratic vote shares for its U.S. House of Representa-

677



Identify Fluid Flow Vortices 
[Ma&Sutherland et al., 2015] 
Observe point vectors 
Objective overlapping windows of 
11x11 that contain a vortex 
Classifier 2-layer neural net 
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Active Pointillistic Pattern Search
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Figure 5: (a): Positive (top) and negative (bottom) training examples for the vortex classifier. (b): The velocity field used;
each arrow is the average of a 2⇥ 2 square of actual data points. Background color shows the probability obtained by each
region classifier on the 200 circled points; red circles mark points selected by one run of APPS initialized at the green circles.

regions. We again thresholded at ✓ = 0.7. We evaluate (2)
via a Monte Carlo approximation: first we took 4 samples
of z⇤, and then 15 samples from the posterior of f over the
window for each z⇤. Furthermore, at each step we evaluate
a random subset of 80 possible candidates x⇤.

Figure 6: Mean recalls over the search process on the vortex
experiment. Color bands show standard errors after 15 runs.

Figure 6 shows recall curves of active pattern search, un-
certainty sampling, and random selection, where for the
purpose of these curves we call the true label the output of
the classifier when all data is known, and the proposed label
is true if T

g

> ✓ at that point of the search (evaluated using
more Monte Carlo samples than in the search process, to
gain assurance in our evaluation but without increasing the
time required for the search). We can see that active pattern
search substantially outperforms uncertainty sampling and

random selection. As in Section 4.1, uncertainty sampling
was initially bad but later surpassed random selection, for
the same reason.

5 Conclusions

We have introduced the general active pointillistic pattern
search problem, where we seek to discover specific local
patterns exhibited by an underlying smooth function with a
limited observation budget. We proposed a framework built
on Bayesian decision theory for the sequential active selec-
tion of observations so as to maximize the expected number
of matching locations discovered at termination. We derived
analytical forms for the required quantities for a broad class
of models, and demonstrated the method’s efficacy across
three very different settings, using two different analytical
classifier forms and one based on sampling.
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random selection. As in Section 4.1, uncertainty sampling
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the same reason.
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search problem, where we seek to discover specific local
patterns exhibited by an underlying smooth function with a
limited observation budget. We proposed a framework built
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Summary: Active Search for 
Region Patterns 
Bayesian expected rewards maximization 
Closed-form solution has two steps 

-  In each region, choose a point by Bayesian quadrature 

-  Choose the final query by comparing regions UCB-style  

Monte-Carlo approach allows for experiments with complex 
patterns 
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Outline / Contributions 
Active search on graphs 
-  (NIPS 2013; UAI 2015) 

 
 
Active search with region rewards 

-  (AISTATS 2014;2015) 

 
 
Active search with region queries 
-  (AAAI 2017) 

 
 
Fast active search using conjugate sampling 

-  (in preparation) 
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Region sensing (aggregate value) 

Task: localize the sources 

•  Radiation 
•  Gas leaks 
•  Survivors 

Sparse Rewards and Region 
Sensing 

Control: both altitude and position 



Demo Active Search 
 
Find blue colors on a real satellite image 

Simulate search and rescue in open areas 

(Used a blue filter on the RGB values, yielding scalar outcomes) 
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Demo Active Search 
 
Find blue colors on a real satellite image 

Simulate search and rescue in open areas 

(Used a blue filter on the RGB values, yielding scalar outcomes) 
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Discretize (1d) search space

�⇤ 2 Rn
+: vector of true values

n total grid points

k-sparse signals µ: signal value at nonzero
locations (0 elsewhere)

S⇤: set of nonzero signal locations

Problem Formulation 

1d search, n total grid points 
k-sparse signal 

 
 

aggregate 
measurement 

 

 

Sensing model 
Objective: design xt to recovery the support of β* 
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Discretize (1d) search space

�⇤ 2 Rn
+: vector of true values
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Discretize (1d) search space

�⇤ 2 Rn
+: vector of true values

n total grid points

k-sparse signals µ: signal value at nonzero
locations (0 elsewhere)

S⇤: set of nonzero signal locations

Not Compressive Sensing 
Or Distilled Sampling 
1d search, n total grid points 
k-sparse signal 

 
 

aggregate 
measurement 

 

 

Sensing model 
Objective: design xt to recovery the support of β* 
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xt 2 Rn
+, kxtk2 = 1
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>
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⇤ + "t, "t ⇠ N (0, 1)

Non-uniform weights 
can encode locations 



Binary Search 
Goal: find 1-sparse signal with noiseless measurements 
 

Binary search algorithm 

Init: Set valid region to the entire environment 
Repeat 
   Choose xt to bisect the valid region 
   Observe yt  
   Keep or eliminate the section corresponding to xt 
Until the valid region contains a single point 

 

Total number of measurements: 

                                                          , hiding logarithmic factors 
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O(log2 n) = ˜O(1)



Our Algorithm 
Region Sensing Index (RSI) 
For 1-sparse signal, assume uniform prior on 
 

Repeat 

Maximize Information Gain (IG) 
Observe 
Update 

Until             concentrates on a single point location 

 

For k-sparse, repeat the above to find each signal or 
directly build distributions on all k-sparse signals 
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Noiseless Information Gain: 
Connection to Binary Search 
Equivalent to marginal entropy, 
 

 
e.g., with noiseless measurements 

 
 
 
 
   : hit chance,                : measurement strength. 

 
Maximum IG is log(2), by binary search,  
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µp
kxk0pt(x

>� > 0)

pt(x
>� > 0) =

1

2
.

I(�; y(x)) = H(y(x))� E[H(y(x) | �)]| {z }
Const.

y(x) =

(
µp
kxk0

if x

>�⇤ > 0;

0 otherwise.



Information Gain with Noise 

Equivalent to marginal entropy, 
 

 
e.g., with noisy measurements 

 
 
 
 
   : hit chance,                : measurement strength. 

 
Maximum IG is less than log(2), but how much less? 
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Coverage vs. Fidelity 
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Region-averaging measurements

xt: sensing vector at iteration t

X : set of all feasible vectors

nonzero weight in a rectangular region

equal weight such that kxtk2 ⌘ 1s 

measurement strength 
(fidelity) 

Hit chance 
(coverage) 

Larger region 

Smaller region 

t=1 



Noiseless IG Contour 
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Region-averaging measurements

xt: sensing vector at iteration t

X : set of all feasible vectors

nonzero weight in a rectangular region

equal weight such that kxtk2 ⌘ 1s 

measurement strength 
(fidelity) 

Hit chance 
(coverage) 

Larger region 

Smaller region 

t=1 



Noiseless IG Contour 
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Region-averaging measurements

xt: sensing vector at iteration t

X : set of all feasible vectors

nonzero weight in a rectangular region

equal weight such that kxtk2 ⌘ 1s 

measurement strength 
(fidelity) 

Hit chance 
(coverage) 

t=2 t=3 t=1 



IG Contour with Noise 
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Hit chance 
(coverage) 

Region-averaging measurements

xt: sensing vector at iteration t

X : set of all feasible vectors

nonzero weight in a rectangular region

equal weight such that kxtk2 ⌘ 1s 

t=2 t=3 

measurement strength 
(fidelity) 

t=1 



Number of Measurements 
Before finding the true signal, for every query 
 
 

Because a uniform prior on β has no more than log(n) bits of 
uncertainty, the expected number of measurements is at most 
 

 

Larger signal-to-noise ratio µ    =>   fewer measurements 
Near-optimal rate 
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Simulation Result 
Fix search space (d=1, n=1024) and 1-sparse signal 

As we vary signal-to-noise ratio µ, the number of measurements change 

At same µ, our method uses the fewest number of measurements 

 

RSI: Our algorithm 

CASS*: Malloy&Nowak 2013 

Point: point sensing 
CS: Compressive sensing 
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Search for Blue Pixels on 
Satellite Images 
Satellite images like the demo 

Our method finds the most number of blue pixels w/ equal observations. 
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Ours 
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Summary: Active Aerial 
Search 
Allow queries on a region of points 
-  Only average value is kept 

-  Coverage vs. fidelity trade-off 

-  Propose algorithm RSI by information criteria 

-  Near-optimal expected number of measurements 

-  Experiments with real satellite images 
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Outline / Contributions 
Active search on graphs 
-  (NIPS 2013; UAI 2015) 

 
 
Active search with region rewards 

-  (AISTATS 2014;2015) 

 
 
Active search with region queries 
-  (AAAI 2017) 

 
 
Fast active search using conjugate sampling 

-  (in preparation) 
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Scalability Issues 

Bayesian methods are … 

62 

“Optimal” for Designs Notoriously Slow Memory Intense 

Graphs with n nodes O(n3) initial, 
then O(n2) O(n2) 

GP with n points O(n2) per step O(n2) 

Aerial search with k 
signals O(nk) per step O(nk) 



Thompson Sampling 
 
 
Recall active search on graphs 

Exploration: reduce model uncertainty 

Plus Exploitation: check likely positives to collect rewards 
 

Thompson sampling 

Sample 
Pick 
 

How to sample efficiently? 
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st+1 = argmax

i

˜fi

˜f ⇠ N (E(f | yS),Cov(f | yS))



Exact Sampling from Multivariate 
Normal Distributions 
The usual approach 
In order to draw 
 

Step 1. Decompose 

Step 2. Draw iid   

Step 3. Transform 

 

Can we make it faster when C = A-1 and A is sparse? 

Complexity: 

Gradient descent < solving linear systems < matrix decomposition 
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✓̃ ⇠ N (0,C)

C = PP>

⇠i
iid⇠ N (0, 1)

✓̃ = P⇠



Conjugate Sampling 
(in preparation) 
Goal: approximately sample from 
 
1.  Use k conjugate gradient steps to solve 
 

 

      Let the conjugate gradients be p1,…,pk 

2.  Keep a running sum 

 
 

3.  Rescale when k<n, 

65 [Plot adapted from 
wikipedia by Oleg Alexandrov] 

b 

pk 

p1 

⇠kpk

⇠1p1✓̃
✓̃ =

r
n

k
⌘̃

✓̃ ⇡ N (0,A�1)

Ax = b, where b ⇠ N (0, I)



Exact Sampling When k=n 
Conjugate vectors are A-orthogonal, we have 
 
 

Let P=(p1, p2, …, pn), 

 

 

 
 

Therefore, 
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p>
i Apj =

(
0 if i 6= j

1 otherwise

P>AP = I

A = P�>P�1

A�1 = PP>

[Plot adapted from 
wikipedia by Oleg Alexandrov] 
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Intuition When k=1 
Effectively, sample any 
 
(A-)normalize to a unit direction vector 

 

 

Explore on the same direction 
with normalized scales 
 
 

Exploration may be suboptimal, 
but sufficient in our simulations. 
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Simulation on Cumulative 
Regret 
Show cumulative regret 
 

Linear function 

Choose any 

 

n = 100 

Unknown  

Observation noise = 1 
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f(x) = x

>✓

tX

⌧=1

[f(x⇤)� f(x⌧ )]



Simulation on Cumulative 
Regret 
Show cumulative regret 
 

Smooth function 

Choose any  

 

n = 125 

Kernel length-scale = 0.3 

Observation noise = 1 
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Comparison 
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Assume information matrix, A, is n-by-n with m nonzero elements. 

Assume k<<n. 

 

 

 

 

 

 

 

 

Disclaimer: still solves for the mean, the same order of complexity. 

Method and condition Time complexity 
(order) 

Space complexity 
(order) 

Thompson sampling (naïve) n3 n2 

Thompson sampling (online) n2 n2 

Rank-k matrix approximation k2(n+m) m+kn 

Rank-k conjugate sampling k(n+m) m+n 



Conjugate Sampling Review 
Bayesian methods are often slow to make decisions 
-  Thompson sampling draws only once to make greedy decisions 

-  Conjugate sampling aggressively approximates the posterior 

-  Faster designs on Graphs and Kronecker-GPs 

-  Similar regrets to exact Thompson sampling 

-  A lazy alternative for easy decision-making 

 
Future work: 

-  On large graphs? 

-  Numerical stability? 
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Conclusion 
Actively search for positives in an unknown environ 
by collecting and learning from feedback. 
On graphs 
-  Σ-optimality as a better exploration heuristic 
-  Theoretical properties (global opt, cum. regret) 
Region rewards 
-  Greedy maximization of expected rewards 
-  Point choices connect to Bayesian quadrature 
Region queries 
-  Extend binary search to noisy settings 
-  Bound expected number of measurements 
Conjugate sampling 
-  Fast decision making for Graphs or GPs 
-  Flexible for more complex scenarios 
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Future Work 
Active search on graphs 
-  Other models for node label distribution 
-  Exploration based on other spectral properties 
-  Use conjugate sampling for search on large graphs 
Robotic applications 
-  Active search for areas of tumors, blood vessels, etc. 
-  Aerial search with multi-pixel camera 
-  Use reinforcement learning to imitate & improve search 
-  Path planning, ergodic exploration 
Unified models for region queries and region rewards 
-  Bipartite graph formulation 
-  Sampling based approach 
Monte-Carlo tree search 
-  Games, combinatorial optimization, control with discrete states 
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The Goal: Compare Sequential 
Active Learning Algos 

Sequentially Select s for 
 

                                        s: labeled, u: unlabeled. (u,s): complementary 
 Possible strategies: (at step k with uk unlabeled)_   

Σ-Optimality1  

V-Optimality2  

Info Gain (IG)3 

Mutual (MIG)3 

Uncertainty4                              

E Error (EER)4  

\min_{v'} \Big({\bf 1}^\top 
(L_{u^k\backslash\
{v'\}})^{-1} {\bf 1}\Big) 
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Contributions 

App Challenge Previous 
approach 

Contribution Papers 

Information 
Retrieval 

Similarity features Linear models Graphs NIPS 2013; 
UAI 2015 

Monitoring / 
Polling 

Reward defined by 
a group of points 

Point rewards Group rewards AISTATS 
2014; 2015 

Surveillance Sparse signal Point 
measurements 

Aggregate 
measurements 

AAAI 2017 

Complex 
systems 

Infeasible to find 
optimal design 

Thompson 
sampling 

Faster 
sampling 

ICML 2017 
Workshop 

79 



Alternative Intuition 

Assuming regions are independent 
 
Select points in a region 

Variance reduction of the integral 
Bayesian quadrature [Minka 2000] 
Σ-optimality 
 

Select a region 

High posterior mean 
and 
High variance reduction 
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Summary 
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Linear Bandits in 
High-Dimensions 
Problem:  max                              with unknown θ 
   choose x1, …, xt sequentially, s.t. 
   observe 
   evaluate on 
 
Intuitions:  
   To infer θ,   x1:t must cover most directions in Rn 

   To max f,    xt must be close to empirical solution 
 
Challenges: 
   n is large (n >> t) 
   use prior information on θ 
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Pt
⌧=1 x⌧

x1 x2

xt ✓



Problem Specification 
Assume prior 
Iterate  
   collect and infer posterior  

              where 

   draw 

   pick  

 
☐ Fast and approximate sample from?  

 

     (ignore the mean) 
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Applications 

Application Active Search Allows 

Environmental monitoring Finding all polluted areas 

Product recommendation New users w/ little purchase history 

Information retrieval Relevant but underspecified results 

Search and rescue Localize all distress signals 
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Idea 1: Active Search on 
Graphs 

Graphs can represent complex information 
-  High-dim sparse features, links, hierarchical structures. 

Important to predicting labels 

Example: 

A k-nearest-neighbor graph 
of hand-written digits 

Based on Euclidean distance 
on concatenated pixel values 

Visually similar digits form clusters 
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Idea 1: Active Search on 
Graphs 

Graphs can represent complex information 
-  High-dim sparse features, links, hierarchical structures. 

Important to predicting labels 

Example: 

A k-nearest-neighbor graph 
of hand-written digits 

Based on Euclidean distance 
on concatenated pixel values 

Visually similar digits form clusters 

Same graph with more data 
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Idea 1: Active Search on 
Graphs 

Graphs can be important to label predictions 
Example: 
A k-nearest-neighbor graph 
of hand-written digits 

Based on Euclidean distance 
on concatenated pixel values 

Visually similar digits form clusters 

A few queries often sufficient for prediction 
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Isolet 1+2+3+4 
5-nearest neighbor graph 
Random first query 
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6238 Spoken letter recordings 
617 dimensional frequency feature 
5-nearest neighbor graph from raw input 
Random subsample 70% instances 
First query fixed at largest degree 
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Active Surveying 
 

DBLP Coauthorship 
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Algorithm 
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Maximize 1-step look-ahead expected reward 
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PA Election 
(Races vs. Precincts) 
Search for positive electoral races with precinct queries. 
Regions 
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tives, Pennsylvania House of Representatives, and Penn-
sylvania State Senate races; the demographic/geographic
kernel was multiplied by a positive-definite covariance ma-
trix amongst the races. We learned the hyperparameters for
this kernel by maximizing the likelihood of the model on
full 2008 election data.

Given the kernel, we set up experiments to predict 2010
races based on surveying an individual voting precinct at a
time. For simplicity, we assume that a given voting precinct
can be thoroughly surveyed (and ignore turnout effects,
voters changing their minds over time, and so on); thus ob-
servations were made with the true vote share. We seeded
the experiment with a random 10 (out of 16 226) districts
observed; APPS selected from a random subset of 100 pro-
posals at each step. We again used ✓ = 0.7.

Figure 4: Recalls for election prediction. Color bands show
standard errors after 15 runs.

Figure 4 shows the mean and standard errors of 15 runs.
APPS outperforms both random and uncertainty sampling
here, though in this case the margin over random sampling
is much narrower. This is probably because the portion of
regions which are positive in this problem is much higher,
so more points are informative.

Uncertainty sampling is in fact worse than random here,
which is not too surprising because the purely explorative
nature of UNC is even worse on the high dimensional input
space of this problem.

LSE and AAS are not applicable to this problem, as they
have no notion of weighting points (by population).

4.3 Finding Vortices (Black-Box Classifier)

We now turn to more complex pattern classifiers by studying
the task of identifying vortices in a vector field based on
limited observations of flow vectors. Linear classifiers are
insufficient for this problem,4 so we will demonstrate the

4The set of vortices is not convex: consider the midpoint be-
tween a clockwise vortex and its identical counter-clockwise case.

flexibility of our approach with a black-box classifier.

To illustrate this setting, we consider the results of a large-
scale simulation of a turbulent fluid in three dimensions over
time in the Johns Hopkins Turbulence Databases5 [13]. Fol-
lowing Sutherland et al. [16], we aim to recognize vortices
in two-dimensional slices of the data at a single timestep,
based on the same small training set of 11 vortices and 20
non-vortices, partially shown in Figure 5(a).

Recall that h
g

assigns probability estimates to the entire
function class F confined to region g. Unlike the previous
examples, it is insufficient to consider only a weighted in-
tegral of f . Instead, though, we can consider the average
flow across sectors (angular slices from the center) of our
region as building blocks in detecting vortices. We count
how many sectors have clockwise/counter-clockwise flows
to give a classification result, in three steps:

1. First, we divide a region into K sectors. In each sector,
we take the integral of the inner product between the
actual flow vectors and a template. The template is
an “ideal” vortex, but with larger weights in the center
than the periphery. This produces a K-dimensional
summary statistic L

g

(f) for each region.

2. Next, we improve robustness against different flow
speeds in the data by scaling L

g

(f) to have maximum
entry 1, and flip its sign if its mean is negative. Call
the result ˜L

g

(f).

3. Finally, we feed the normalized ˜

L

g

(f) vector through
a 2-layer neural network of the form

h

g

(f) = �

 
wout

KX

i=1

�

⇣
win ˜Lg

(f)

i

+ bin

⌘
+ bout

!
,

where � is the logistic sigmoid function.

L

g

(f) | D obeys a K-dimensional multivariate normal dis-
tribution, from which we can sample many possible L

g

(f),
which we then normalize and pass through the neural net-
work as described above. This gives samples of probabilities
h

g

, whose mean is a Monte Carlo estimate of (2).

We used K = 4 sectors, and the weights in the template
were fixed such that the length scale matches the distance
from the center to an edge. The network was optimized for
classification accuracy on the training set. We then identified
a 50⇥ 50-pixel slice of the data that contains two vortices,
some other “interesting” regions, and some “boring” regions,
mostly overlapping with Figure 11 of Sutherland et al. [16];
the region, along with the output of the classifier when given
all of the input points, is shown in Figure 5(b). We then ran
APPS, initialized with 10 uniformly random points, for 200
steps. We defined the regions to be squares of size 11⇥ 11

and spaced them every 2 points along the grid, for 400 total
5
http://turbulence.pha.jhu.edu
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Dots: precinct centers, same color: races; 
Build kernel on precincts by demographic info. 



Outline / Contributions 

Active search Point rewards Region rewards 

Point queries 1.  Active search on graphs  
NIPS 2013; UAI 2015 

2.  Active area search 
AISTATS 2014; 2015 

Region queries 3.  Active aerial search 
AAAI 2017 

•  A unified model 
(future work) 

4.  Conjugate Sampling 
(in preparation) 
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Simple Pattern: 
Region Average 
Assume a smooth function f(x)  
Point observations 

Choose point xi 
Observe value zi = f(xi) + ε 

Region pattern 

Pre-define regions Ag for 
Pattern: region average > a given value b 
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Point Observations 
Are Smooth 
Assume f(x) a smooth function for x in Rd 

ó Assume f(x) is drawn from a Gaussian Process (GP) 
-  A prior distribution over functions 

-  High prob. to draw smooth functions 
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Point Observations 
Are Smooth 
Assume f(x) a smooth function for x in Rd 

ó Assume f(x) is drawn from a Gaussian Process (GP) 
-  A prior distribution over functions 

-  High prob. to draw smooth functions 

With observed values (“+”) 

-  Becomes a posterior dist. 

-  Consistent w/ observations 
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Point Observations 
Are Smooth 
Assume f(x) a smooth function for x in Rd 

ó Assume f(x) is drawn from a Gaussian Process (GP) 
-  A prior distribution over functions 

-  High prob. to draw smooth functions 

With observed values (“+”) 

-  Becomes a posterior dist. 

-  Consistent w/ observations 

Assign rewards if region 
pattern has high probability 

96 

A1 A2 A3 A4 

b 

0 1 0 0 r = 

rA(X, z) = 1nE
�
hA(f)|X,z

�
>✓

o



Algorithm: Greedy Maximization 
of Expected Reward 
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Reward: 

 

At step t+1, choose location xt+1 to maximize 

 

 

How? Use Bayesian look-ahead decisions 

1.  Sample possible outcomes from GP posterior 

2.  For each          , estimate (by additional sampling if necessary) 

3.  Estimate 
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û(xt+1) =
1
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j=1
r̃

(j)

z̃

(1)
t+1, . . . , z̃

(s)
t+1 ⇠ GP(z(xt+1) | X1:t, z1:t)

r̃ = r(X1:t [ {xt+1}, z1:t [ {z̃t+1})

z̃t+1

u(xt+1) = E
h
r(X1:t+1, z1:t+1)

��� zt+1 ⇠ GP(z(xt+1) | X1:t, z1:t)
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Demo Active Search 

Find blue colors on a real satellite image 
Simulate search and rescue in open areas 
Used a blue filter on the RGB values, yielding scalar outcomes 
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(a) True point values  (b) search sequence 
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